### Refine

#### Has Fulltext

- yes (2) (remove)

#### Document Type

- Doctoral Thesis (2) (remove)

#### Keywords

- dynamical systems (2) (remove)

In the present work, we use symbolic regression for automated modeling of dynamical systems. Symbolic regression is a powerful and general method suitable for data-driven identification of mathematical expressions. In particular, the structure and parameters of those expressions are identified simultaneously.
We consider two main variants of symbolic regression: sparse regression-based and genetic programming-based symbolic regression. Both are applied to identification, prediction and control of dynamical systems.
We introduce a new methodology for the data-driven identification of nonlinear dynamics for systems undergoing abrupt changes. Building on a sparse regression algorithm derived earlier, the model after the change is defined as a minimum update with respect to a reference model of the system identified prior to the change. The technique is successfully exemplified on the chaotic Lorenz system and the van der Pol oscillator. Issues such as computational complexity, robustness against noise and requirements with respect to data volume are investigated.
We show how symbolic regression can be used for time series prediction. Again, issues such as robustness against noise and convergence rate are investigated us- ing the harmonic oscillator as a toy problem. In combination with embedding, we demonstrate the prediction of a propagating front in coupled FitzHugh-Nagumo oscillators. Additionally, we show how we can enhance numerical weather predictions to commercially forecast power production of green energy power plants.
We employ symbolic regression for synchronization control in coupled van der Pol oscillators. Different coupling topologies are investigated. We address issues such as plausibility and stability of the control laws found. The toolkit has been made open source and is used in turbulence control applications.
Genetic programming based symbolic regression is very versatile and can be adapted to many optimization problems. The heuristic-based algorithm allows for cost efficient optimization of complex tasks.
We emphasize the ability of symbolic regression to yield white-box models. In contrast to black-box models, such models are accessible and interpretable which allows the usage of established tool chains.

Synchronization – the adjustment of rhythms among coupled self-oscillatory systems – is a fascinating dynamical phenomenon found in many biological, social, and technical systems.
The present thesis deals with synchronization in finite ensembles of weakly coupled self-sustained oscillators with distributed frequencies.
The standard model for the description of this collective phenomenon is the Kuramoto model – partly due to its analytical tractability in the thermodynamic limit of infinitely many oscillators. Similar to a phase transition in the thermodynamic limit, an order parameter indicates the transition from incoherence to a partially synchronized state. In the latter, a part of the oscillators rotates at a common frequency. In the finite case, fluctuations occur, originating from the quenched noise of the finite natural frequency sample.
We study intermediate ensembles of a few hundred oscillators in which fluctuations are comparably strong but which also allow for a comparison to frequency distributions in the infinite limit.
First, we define an alternative order parameter for the indication of a collective mode in the finite case. Then we test the dependence of the degree of synchronization and the mean rotation frequency of the collective mode on different characteristics for different coupling strengths.
We find, first numerically, that the degree of synchronization depends strongly on the form (quantified by kurtosis) of the natural frequency sample and the rotation frequency of the collective mode depends on the asymmetry (quantified by skewness) of the sample. Both findings are verified in the infinite limit.
With these findings, we better understand and generalize observations of other authors. A bit aside of the general line of thoughts, we find an analytical expression for the volume contraction in phase space.
The second part of this thesis concentrates on an ordering effect of the finite-size fluctuations. In the infinite limit, the oscillators are separated into coherent and incoherent thus ordered and disordered oscillators. In finite ensembles, finite-size fluctuations can generate additional order among the asynchronous oscillators. The basic principle – noise-induced synchronization – is known from several recent papers. Among coupled oscillators, phases are pushed together by the order parameter fluctuations, as we on the one hand show directly and on the other hand quantify with a synchronization measure from directed statistics between pairs of passive oscillators.
We determine the dependence of this synchronization measure from the ratio of pairwise natural frequency difference and variance of the order parameter fluctuations. We find a good agreement with a simple analytical model, in which we replace the deterministic fluctuations of the order parameter by white noise.