### Refine

#### Has Fulltext

- yes (4) (remove)

#### Document Type

- Doctoral Thesis (4) (remove)

#### Keywords

- Gravitationswellen (4) (remove)

#### Institute

I perform and analyse the first ever calculations of rotating stellar iron core collapse in {3+1} general relativity that start out with presupernova models from stellar evolutionary calculations and include a microphysical finite-temperature nuclear equation of state, an approximate scheme for electron capture during collapse and neutrino pressure effects. Based on the results of these calculations, I obtain the to-date most realistic estimates for the gravitational wave signal from collapse, bounce and the early postbounce phase of core collapse supernovae. I supplement my {3+1} GR hydrodynamic simulations with 2D Newtonian neutrino radiation-hydrodynamic supernova calculations focussing on (1) the late postbounce gravitational wave emission owing to convective overturn, anisotropic neutrino emission and protoneutron star pulsations, and (2) on the gravitational wave signature of accretion-induced collapse of white dwarfs to neutron stars.

One of the most exciting predictions of Einstein's theory of gravitation that have not yet been proven experimentally by a direct detection are gravitational waves. These are tiny distortions of the spacetime itself, and a world-wide effort to directly measure them for the first time with a network of large-scale laser interferometers is currently ongoing and expected to provide positive results within this decade. One potential source of measurable gravitational waves is the inspiral and merger of two compact objects, such as binary black holes. Successfully finding their signature in the noise-dominated data of the detectors crucially relies on accurate predictions of what we are looking for. In this thesis, we present a detailed study of how the most complete waveform templates can be constructed by combining the results from (A) analytical expansions within the post-Newtonian framework and (B) numerical simulations of the full relativistic dynamics. We analyze various strategies to construct complete hybrid waveforms that consist of a post-Newtonian inspiral part matched to numerical-relativity data. We elaborate on exsisting approaches for nonspinning systems by extending the accessible parameter space and introducing an alternative scheme based in the Fourier domain. Our methods can now be readily applied to multiple spherical-harmonic modes and precessing systems. In addition to that, we analyze in detail the accuracy of hybrid waveforms with the goal to quantify how numerous sources of error in the approximation techniques affect the application of such templates in real gravitational-wave searches. This is of major importance for the future construction of improved models, but also for the correct interpretation of gravitational-wave observations that are made utilizing any complete waveform family. In particular, we comprehensively discuss how long the numerical-relativity contribution to the signal has to be in order to make the resulting hybrids accurate enough, and for currently feasible simulation lengths we assess the physics one can potentially do with template-based searches.

The inspiral and merger of two black holes is among the most exciting and extreme events in our universe. Being one of the loudest sources of gravitational waves, they provide a unique dynamical probe of strong-field general relativity and a fertile ground for the observation of fundamental physics. While the detection of gravitational waves alone will allow us to observe our universe through an entirely new window, combining the information obtained from both gravitational wave and electro-magnetic observations will allow us to gain even greater insight in some of the most exciting astrophysical phenomena. In addition, binary black-hole mergers serve as an intriguing tool to study the geometry of space-time itself. In this dissertation we study the merger process of binary black-holes in a variety of conditions. Our results show that asymmetries in the curvature distribution on the common apparent horizon are correlated to the linear momentum acquired by the merger remnant. We propose useful tools for the analysis of black holes in the dynamical and isolated horizon frameworks and shed light on how the final merger of apparent horizons proceeds after a common horizon has already formed. We connect mathematical theorems with data obtained from numerical simulations and provide a first glimpse on the behavior of these surfaces in situations not accessible to analytical tools. We study electro-magnetic counterparts of super-massive binary black-hole mergers with fully 3D general relativistic simulations of binary black-holes immersed both in a uniform magnetic field in vacuum and in a tenuous plasma. We find that while a direct detection of merger signatures with current electro-magnetic telescopes is unlikely, secondary emission, either by altering the accretion rate of the circumbinary disk or by synchrotron radiation from accelerated charges, may be detectable. We propose a novel approach to measure the electro-magnetic radiation in these simulations and find a non-collimated emission that dominates over the collimated one appearing in the form of dual jets associated with each of the black holes. Finally, we provide an optimized gravitational wave detection pipeline using phenomenological waveforms for signals from compact binary coalescence and show that by including spin effects in the waveform templates, the detection efficiency is drastically improved as well as the bias on recovered source parameters reduced. On the whole, this disseration provides evidence that a multi-messenger approach to binary black-hole merger observations provides an exciting prospect to understand these sources and, ultimately, our universe.

This thesis describes two main projects; the first one is the optimization of a hierarchical search strategy to search for unknown pulsars. This project is divided into two parts; the first part (and the main part) is the semi-coherent hierarchical optimization strategy. The second part is a coherent hierarchical optimization strategy which can be used in a project like Einstein@Home. In both strategies we have found that the 3-stages search is the optimum strategy to search for unknown pulsars. For the second project we have developed a computer software for a coherent Multi-IFO (Interferometer Observatory) search. To validate our software, we have worked on simulated data as well as hardware injected signals of pulsars in the fourth LIGO science run (S4). While with the current sensitivity of our detectors we do not expect to detect any true Gravitational Wave signals in our data, we can still set upper limits on the strength of the gravitational waves signals. These upper limits, in fact, tell us how weak a signal strength we would detect. We have also used our software to set upper limits on the signal strength of known isolated pulsars using LIGO fifth science run (S5) data.