### Refine

#### Has Fulltext

- yes (88) (remove)

#### Year of publication

#### Keywords

- index (7)
- manifolds with singularities (6)
- pseudodifferential operators (4)
- 'eta' invariant (3)
- Fredholm property (3)
- Hodge theory (3)
- Toeplitz operators (3)
- boundary value problems (3)
- differential operators (3)
- elliptic complexes (3)

For a sequence of Hilbert spaces and continuous linear operators the curvature is defined to be the composition of any two consecutive operators. This is modeled on the de Rham resolution of a connection on a module over an algebra. Of particular interest are those sequences for which the curvature is "small" at each step, e.g., belongs to a fixed operator ideal. In this context we elaborate the theory of Fredholm sequences and show how to introduce the Lefschetz number.

In order to characterise the C*-algebra generated by the singular Bochner-Martinelli integral over a smooth closed hypersurfaces in Cn, we compute its principal symbol. We show then that the Szegö projection belongs to the strong closure of the algebra generated by the singular Bochner-Martinelli integral.

The Riemann hypothesis is equivalent to the fact the the reciprocal function 1/zeta (s) extends from the interval (1/2,1) to an analytic function in the quarter-strip 1/2 < Re s < 1 and Im s > 0. Function theory allows one to rewrite the condition of analytic continuability in an elegant form amenable to numerical experiments.

By quasicomplexes are usually meant perturbations of complexes small in some sense. Of interest are not only perturbations within the category of complexes but also those going beyond this category. A sequence perturbed in this way is no longer a complex, and so it bears no cohomology. We show how to introduce Euler characteristic for small perturbations of Fredholm complexes. The paper is to appear in Funct. Anal. and its Appl., 2006.

We consider a boundary value problem for an elliptic differential operator of order 2m in a domain D ⊂ n. The boundary of D is smooth outside a finite number of conical points, and the Lopatinskii condition is fulfilled on the smooth part of δD. The corresponding spaces are weighted Sobolev spaces H(up s,Υ)(D), and this allows one to define ellipticity of weight Υ for the problem. The resolvent of the problem is assumed to possess rays of minimal growth. The main result says that if there are rays of minimal growth with angles between neighbouring rays not exceeding π(Υ + 2m)/n, then the root functions of the problem are complete in L²(D). In the case of second order elliptic equations the results remain true for all domains with Lipschitz boundary.

We study the Neumann problem for the de Rham complex in a bounded domain of Rn with singularities on the boundary. The singularities may be general enough, varying from Lipschitz domains to domains with cuspidal edges on the boundary. Following Lopatinskii we reduce the Neumann problem to a singular integral equation of the boundary. The Fredholm solvability of this equation is then equivalent to the Fredholm property of the Neumann problem in suitable function spaces. The boundary integral equation is explicitly written and may be treated in diverse methods. This way we obtain, in particular, asymptotic expansions of harmonic forms near singularities of the boundary.

We show a Lefschetz fixed point formula for holomorphic functions in a bounded domain D with smooth boundary in the complex plane. To introduce the Lefschetz number for a holomorphic map of D, we make use of the Bergman kernal of this domain. The Lefschetz number is proved to be the sum of usual contributions of fixed points of the map in D and contributions of boundary fixed points, these latter being different for attracting and repulsing fixed points.

Anisotropic edge problems
(2002)

We investigate elliptic pseudodifferential operators which degenerate in an anisotropic way on a submanifold of arbitrary codimension. To find Fredholm problems for such operators we adjoint to them boundary and coboundary conditions on the submanifold.The algebra obtained this way is a far reaching generalisation of Boutet de Monvel's algebra of boundary value problems with transmission property. We construct left and right regularisers and prove theorems on hypoellipticity and local solvability.

The paper is devoted to asymptotic analysis of the Dirichlet problem for a second order partial differential equation containing a small parameter multiplying the highest order derivatives. It corresponds to a small perturbation of a dynamical system having a stationary solution in the domain. We focus on the case where the trajectories of the system go into the domain and the stationary solution is a proper node.

On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators
(2012)

We consider a Sturm-Liouville boundary value problem in a bounded domain D of R^n. By this is meant that the differential equation is given by a second order elliptic operator of divergent form in D and the boundary conditions are of Robin type on bD. The first order term of the boundary operator is the oblique derivative whose coefficients bear discontinuities of the first kind. Applying the method of weak perturbation of compact self-adjoint operators and the method of rays of minimal growth, we prove the completeness of root functions related to the boundary value problem in Lebesgue and Sobolev spaces of various types.

We consider the Navier-Stokes equations in the layer R^n x [0,T] over R^n with finite T > 0. Using the standard fundamental solutions of the Laplace operator and the heat operator, we reduce the Navier-Stokes equations to a nonlinear Fredholm equation of the form (I+K) u = f, where K is a compact continuous operator in anisotropic normed Hölder spaces weighted at the point at infinity with respect to the space variables. Actually, the weight function is included to provide a finite energy estimate for solutions to the Navier-Stokes equations for all t in [0,T]. On using the particular properties of the de Rham complex we conclude that the Fréchet derivative (I+K)' is continuously invertible at each point of the Banach space under consideration and the map I+K is open and injective in the space. In this way the Navier-Stokes equations prove to induce an open one-to-one mapping in the scale of Hölder spaces.

Let X be a smooth n -dimensional manifold and D be an open connected set in X with smooth boundary ∂D. Perturbing the Cauchy problem for an elliptic system Au = f in D with data on a closed set Γ ⊂ ∂D we obtain a family of mixed problems depending on a small parameter ε > 0. Although the mixed problems are subject to a non-coercive boundary condition on ∂D\Γ in general, each of them is uniquely solvable in an appropriate Hilbert space DT and the corresponding family {uε} of solutions approximates the solution of the Cauchy problem in DT whenever the solution exists. We also prove that the existence of a solution to the Cauchy problem in DT is equivalent to the boundedness of the family {uε}. We thus derive a solvability condition for the Cauchy problem and an effective method of constructing its solution. Examples for Dirac operators in the Euclidean space Rn are considered. In the latter case we obtain a family of mixed boundary problems for the Helmholtz equation.

Formal Poincaré lemma
(2007)

We show how the multiple application of the formal Cauchy-Kovalevskaya theorem leads to the main result of the formal theory of overdetermined systems of partial differential equations. Namely, any sufficiently regular system Au = f with smooth coefficients on an open set U ⊂ Rn admits a solution in smooth sections of a bundle of formal power series, provided that f satisfies a compatibility condition in U.

This is a brief survey of a constructive technique of analytic continuation related to an explicit integral formula of Golusin and Krylov (1933). It goes far beyond complex analysis and applies to the Cauchy problem for elliptic partial differential equations as well. As started in the classical papers, the technique is elaborated in generalised Hardy spaces also called Hardy-Smirnov spaces.

Let A be a determined or overdetermined elliptic differential operator on a smooth compact manifold X. Write Ssub(A)(D) for the space of solutions to thesystem Au = 0 in a domain D ⊂ X. Using reproducing kernels related to various Hilbert structures on subspaces of Ssub(A)(D) we show explicit identifications of the dual spaces. To prove the "regularity" of reproducing kernels up to the boundary of D we specify them as resolution operators of abstract Neumann problems. The matter thus reduces to a regularity theorem for the Neumann problem, a well-known example being the ∂-Neumann problem. The duality itself takes place only for those domains D which possess certain convexity properties with respect to A.

We consider a (generally, non-coercive) mixed boundary value problem in a bounded domain for a second order elliptic differential operator A. The differential operator is assumed to be of divergent form and the boundary operator B is of Robin type. The boundary is assumed to be a Lipschitz surface. Besides, we distinguish a closed subset of the boundary and control the growth of solutions near this set. We prove that the pair (A,B) induces a Fredholm operator L in suitable weighted spaces of Sobolev type, the weight function being a power of the distance to the singular set. Moreover, we prove the completeness of root functions related to L.

The aim of this book is to develop the Lefschetz fixed point theory for elliptic complexes of pseudodifferential operators on manifolds with edges. The general Lefschetz theory contains the index theory as a special case, while the case to be studied is much more easier than the index problem. The main topics are: - The calculus of pseudodifferential operators on manifolds with edges, especially symbol structures (inner as well as edge symbols). - The concept of ellipticity, parametrix constructions, elliptic regularity in Sobolev spaces. - Hodge theory for elliptic complexes of pseudodifferential operators on manifolds with edges. - Development of the algebraic constructions for these complexes, such as homotopy, tensor products, duality. - A generalization of the fixed point formula of Atiyah and Bott for the case of simple fixed points. - Development of the fixed point formula also in the case of non-simple fixed points, provided that the complex consists of diferential operarators only. - Investigation of geometric complexes (such as, for instance, the de Rham complex and the Dolbeault complex). Results in this direction are desirable because of both purely mathe matical reasons and applications in natural sciences.

We describe a new algebra of boundary value problems which contains Lopatinskii elliptic as well as Toeplitz type conditions. These latter are necessary, if an analogue of the Atiyah-Bott obstruction does not vanish. Every elliptic operator is proved to admit up to a stabilisation elliptic conditions of such a kind. Corresponding boundary value problems are then Fredholm in adequate scales of spaces. The crucial novelty consists of the new type of weighted Sobolev spaces which serve as domains of pseudodifferential operators and which fit well to the nature of operators.

On a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fréchet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operators we develop a Hodge theory for elliptic complexes and outline a few applications thereof.

We consider a homogeneous pseudodifferential equation on a cylinder C = IR x X over a smooth compact closed manifold X whose symbol extends to a meromorphic function on the complex plane with values in the algebra of pseudodifferential operators over X. When assuming the symbol to be independent on the variable t element IR, we show an explicit formula for solutions of the equation. Namely, to each non-bijectivity point of the symbol in the complex plane there corresponds a finite-dimensional space of solutions, every solution being the residue of a meromorphic form manufactured from the inverse symbol. In particular, for differential equations we recover Euler's theorem on the exponential solutions. Our setting is model for the analysis on manifolds with conical points since C can be thought of as a 'stretched' manifold with conical points at t = -infinite and t = infinite.

We prove the existence of a limit in Hm(D) of iterations of a double layer potential constructed from the Hodge parametrix on a smooth compact manifold with boundary, X, and a crack S ⊂ ∂D, D being a domain in X. Using this result we obtain formulas for Sobolev solutions to the Cauchy problem in D with data on S, for an elliptic operator A of order m ≥ 1, whenever these solutions exist. This representation involves the sum of a series whose terms are iterations of the double layer potential. A similar regularisation is constructed also for a mixed problem in D.

The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points.

The paper is devoted to pseudodifferential boundary value problems in domains with cuspidal wedges. Concerning the geometry we even admit a more general behaviour, namely oscillating cuspidal wedges. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to edges.

For a domain D subset of IRn with singular points on the boundary and a weight function ω infinitely differentiable away from the singularpoints in D, we consider a C*-algebra G (D; ω) of operators acting in the weighted space L² (D, ω). It is generated by the operators XD F-¹ σ F XD where σ is a homogeneous function. We show that the techniques of limit operators apply to define a symbol algebra for G (D; ω). When combined with the local principle, this leads to describing the Fredholm operators in G (D; ω).

Function spaces with asymptotics is a usual tool in the analysis on manifolds with singularities. The asymptotics are singular ingredients of the kernels of pseudodifferential operators in the calculus. They correspond to potentials supported by the singularities of the manifold, and in this form asymptotics can be treated already on smooth configurations. This paper is aimed at describing refined asymptotics in the Dirichlet problem in a ball. The beauty of explicit formulas highlights the structure of asymptotic expansions in the calculi on singular varieties.

In a bounded domain with smooth boundary in R^3 we consider the stationary Maxwell equations
for a function u with values in R^3 subject to a nonhomogeneous condition
(u,v)_x = u_0 on
the boundary, where v is a given vector field and u_0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.

We discuss the Cauchy problem for the Dolbeault cohomology in a domain of C n with data on a part of the boundary. In this setting we introduce the concept of a Carleman function which proves useful in the study of uniqueness. Apart from an abstract framework we show explicit Carleman formulas for the Dolbeault cohomology.

When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds to the case of compact manifolds with boundary one is led to a boundary value problem for
the Laplacian of the complex which is usually referred to as Neumann problem. We study the Neumann problem for a larger class of sequences of differential operators on
a compact manifold with boundary. These are sequences of small curvature, i.e., bearing the property that the composition of any two neighbouring operators has order less than two.

We continue our study of invariant forms of the classical equations of mathematical physics,
such as the Maxwell equations or the Lamé system, on manifold with boundary. To this end we interpret them in terms of the de Rham complex at a certain step. On using the structure of the complex we get an insight to predict a degeneracy deeply encoded
in the equations. In the present paper we develop an invariant approach to the classical Navier-Stokes equations.

We study the Cauchy problem for the oscillation equation of the couple-stress theory of elasticity in a bounded domain in R3. Both the displacement and stress are given on a part S of the boundary of the domain. This problem is densely solvable while data of compact support in the interior of S fail to belong to the range of the problem. Hence the problem is ill-posed which makes the standard calculi of Fourier integral operators inapplicable. If S is real analytic the Cauchy-Kovalevskaya theorem applies to guarantee the existence of a local solution. We invoke the special structure of the oscillation equation to derive explicit conditions of global solvability and an approximation solution.

We consider a Cauchy problem for the heat equation in a cylinder X x (0,T) over a domain X in the n-dimensional space with data on a strip lying on the lateral surface. The strip is of the form
S x (0,T), where S is an open subset of the boundary of X. The problem is ill-posed. Under natural restrictions on the configuration of S we derive an explicit formula for solutions of this problem.

We develop an approach to the problem of optimal recovery of continuous linear functionals in Banach spaces through information on a finite number of given functionals. The results obtained are applied to the problem of the best analytic continuation from a finite set in the complex space Cn, n ≥ 1, for classes of entire functions of exponential type which belong to the space Lp, 1 < p < 1, on the real subspace of Cn. These latter are known as Wiener classes.

Let A be a nonlinear differential operator on an open set X in R^n and S a closed subset of X. Given a class F of functions in X, the set S is said to be removable for F relative to A if any weak solution of A (u) = 0 in the complement of S of class F satisfies this equation weakly in all of X. For the most extensively studied classes F we show conditions on S which guarantee that S is removable for F relative to A.

The classical Lefschetz fixed point formula expresses the number of fixed points of a continuous map f : M -> M in terms of the transformation induced by f on the cohomology of M. In 1966 Atiyah and Bott extended this formula to elliptic complexes over a compact closed manifold. In particular, they presented a holomorphic Lefschtz formula for compact complex manifolds without boundary, a result, in the framework of algebraic geometry due to Eichler (1957) for holomorphic curves. On compact complex manifolds with boundary the Dolbeault complex is not elliptic, hence the Atiyah-Bott theory is no longer applicable. To get rid of the difficulties related to the boundary behaviour of the Dolbeault cohomology, Donelli and Fefferman (1986) derived a fixed point formula for the Bergman metric. The purpose of this paper is to present a holomorphic Lefschtz formula on a compact complex manifold with boundary

We prove a theorem on analytic representation of integrable CR functions on hypersurfaces with singular points. Moreover, the behaviour of representing analytic functions near singular points is investigated. We are aimed at explaining the new effect caused by the presence of a singularity rather than at treating the problem in full generality.

Given a system of entire functions in Cn with at most countable set of common zeros, we introduce the concept of zeta-function associated with the system. Under reasonable assumptions on the system, the zeta-function is well defined for all s ∈ Zn with sufficiently large components. Using residue theory we get an integral representation for the zeta-function which allows us to construct an analytic extension of the zeta-function to an infinite cone in Cn.

The problem of analytic representation of integrable CR functions on hypersurfaces with singularities is treated. The nature o singularities does not matter while the set of singularities has surface measure zero. For simple singularities like cuspidal points, edges, corners, etc., also the behaviour of representing analytic functions near singular points is studied.

The inhomogeneous ∂-equations is an inexhaustible source of locally unsolvable equations, subelliptic estimates and other phenomena in partial differential equations. Loosely speaking, for the anaysis on complex manifolds with boundary nonelliptic problems are typical rather than elliptic ones. Using explicit integral representations we assign a Fredholm complex to the Dolbeault complex over an arbitrary bounded domain in C up(n).

We consider quasicomplexes of Boutet de Monvel operators in Sobolev spaces on a smooth compact manifold with boundary. To each quasicomplex we associate two complexes of symbols. One complex is defined on the cotangent bundle of the manifold and the other on that of the boundary. The quasicomplex is elliptic if these symbol complexes are exact away from the zero sections. We prove that elliptic quasicomplexes are Fredholm. As a consequence of this result we deduce that a compatibility complex for an overdetermined elliptic boundary problem operator is also Fredholm. Moreover, we introduce the Euler characteristic for elliptic quasicomplexes of Boutet de Monvel operators.

For elliptic systems of differential equations on a manifold with boundary, we prove the Fredholm property of a class of boundary problems which do not satisfy the Shapiro-Lopatinskii property. We name these boundary problems generalised elliptic, for they preserve the main properties of elliptic boundary problems. Moreover, they reduce to systems of pseudodifferential operators on the boundary which are generalised elliptic in the sense of Saks (1997).

We consider the Dirichlet, Neumann and Zaremba problems for harmonic functions in a bounded plane domain with nonsmooth boundary. The boundary curve belongs to one of the following three classes: sectorial curves, logarithmic spirals and spirals of power type. To study the problem we apply a familiar method of Vekua-Muskhelishvili which consists in using a conformal mapping of the unit disk onto the domain to pull back the problem to a boundary problem for harmonic functions in the disk. This latter is reduced in turn to a Toeplitz operator equation on the unit circle with symbol bearing discontinuities of second kind. We develop a constructive invertibility theory for Toeplitz operators and thus derive solvability conditions as well as explicit formulas for solutions.

In this paper we study the convergence of continuous Newton method for solving nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based on a recent progress in the geometric theory of spirallike functions. We prove convergence theorems and illustrate them by numerical simulations.

For each compact subset K of the complex plane C which does not surround zero, the Riemann surface Sζ of the Riemann zeta function restricted to the critical half-strip 0 < Rs < 1/2 contains infinitely many schlicht copies of K lying ‘over’ K. If Sζ also contains at least one such copy, for some K which surrounds zero, then the Riemann hypothesis fails.

We describe a natural construction of deformation quantisation on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.

For general elliptic pseudodifferential operators on manifolds with singular points, we prove an algebraic index formula. In this formula the symbolic contributions from the interior and from the singular points are explicitly singled out. For two-dimensional manifolds, the interior contribution is reduced to the Atiyah-Singer integral over the cosphere bundle while two additional terms arise. The first of the two is one half of the 'eta' invariant associated to the conormal symbol of the operator at singular points. The second term is also completely determined by the conormal symbol. The example of the Cauchy-Riemann operator on the complex plane shows that all the three terms may be non-zero.

In the preceding paper we proved an explicit index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points. Apart from the Atiyah-Singer integral, it contains two additional terms, one of the two being the 'eta' invariant defined by the conormal symbol. In this paper we clarify the meaning of the additional terms for differential operators.

The index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points contains the Atiyah-Singer integral as well as two additional terms. One of the two is the 'eta' invariant defined by the conormal symbol, and the other term is explicitly expressed via the principal and subprincipal symbols of the operator at conical points. In the preceding paper we clarified the meaning of the additional terms for first-order differential operators. The aim of this paper is an explicit description of the contribution of a conical point for higher-order differential operators. We show that changing the origin in the complex plane reduces the entire contribution of the conical point to the shifted 'eta' invariant. In turn this latter is expressed in terms of the monodromy matrix for an ordinary differential equation defined by the conormal symbol.

We introduce a natural symmetry condition for a pseudodifferential operator on a manifold with cylindrical ends ensuring that the operator admits a doubling across the boundary. For such operators we prove an explicit index formula containing, apart from the Atiyah-Singer integral, a finite number of residues of the logarithmic derivative of the conormal symbol.

The aim of this paper is to bring together two areas which are of great importance for the study of overdetermined boundary value problems. The first area is homological algebra which is the main tool in constructing the formal theory of overdetermined problems. And the second area is the global calculus of pseudodifferential operators which allows one to develop explicit analysis.

We study the Dirichlet problem in a bounded plane domain for the heat equation with small parameter multiplying the derivative in t. The behaviour of solution at characteristic points of the boundary is of special interest. The behaviour is well understood if a characteristic line is tangent to the boundary with contact degree at least 2. We allow the boundary to not only have contact of degree less than 2 with a characteristic line but also a cuspidal singularity at a characteristic point. We construct an asymptotic solution of the problem near the characteristic point to describe how the boundary layer degenerates.

We develop a new approach to the analysis of pseudodifferential operators with small parameter 'epsilon' in (0,1] on a compact smooth manifold X. The standard approach assumes action of operators in Sobolev spaces whose norms depend on 'epsilon'. Instead we consider the cylinder [0,1] x X over X and study pseudodifferential operators on the cylinder which act, by the very nature, on functions depending on 'epsilon' as well. The action in 'epsilon' reduces to multiplication by functions of this variable and does not include any differentiation. As but one result we mention asymptotic of solutions to singular perturbation problems for small values of 'epsilon'.

We study the dynamics of four wave interactions in a nonlinear quantum chain of oscillators under the "narrow packet" approximation. We determine the set of times for which the evolution of decay processes is essentially specified by quantum effects. Moreover, we highlight the quantum increment of instability.

We consider systems of Euler-Lagrange equations with two degrees of freedom and with Lagrangian being quadratic in velocities. For this class of equations the generic case of the equivalence problem is solved with respect to point transformations. Using Lie's infinitesimal method we construct a basis of differential invariants and invariant differentiation operators for such systems. We describe certain types of Lagrangian systems in terms of their invariants. The results are illustrated by several examples.

Asymptotic solutions of the Dirichlet problem for the heat equation at a characteristic point
(2012)

The Dirichlet problem for the heat equation in a bounded domain is characteristic, for there are boundary points at which the boundary touches a characteristic hyperplane t = c, c being a constant. It was I.G. Petrovskii (1934) who first found necessary and sufficient conditions on the boundary which guarantee that the solution is continuous up to the characteristic point, provided that the Dirichlet data are continuous. This paper initiated standing interest in studying general boundary value problems for parabolic equations in bounded domains. We contribute to the study by constructing a formal solution of the Dirichlet problem for the heat equation in a neighbourhood of a characteristic boundary point and showing its asymptotic character.

We elaborate a boundary Fourier method for studying an analogue of the Hilbert problem for analytic functions within the framework of generalised Cauchy-Riemann equations. The boundary value problem need not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in Sobolev spaces. We show a solvability condition of the Hilbert problem, which looks like those for ill-posed
problems, and construct an explicit formula for approximate solutions.

We define weak boundary values of solutions to those nonlinear differential equations which appear as Euler-Lagrange equations of variational problems. As a result we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to the study of Lagrangian problems.

We develop the method of Fischer-Riesz equations for general boundary value problems elliptic in the sense of Douglis-Nirenberg. To this end we reduce them to a boundary problem for a (possibly overdetermined) first order system whose classical symbol has a left inverse. For such a problem there is a uniquely determined boundary value problem which is adjoint to the given one with respect to the Green formula. On using a well elaborated theory of approximation by solutions of the adjoint problem, we find the Cauchy data of solutions of our problem.

We study a boundary value problem for an overdetermined elliptic system of nonlinear first order differential equations with linear boundary operators. Such a problem is solvable for a small set of data, and so we pass to its variational formulation which consists in minimising the discrepancy. The Euler-Lagrange equations for the variational problem are far-reaching analogues of the classical Laplace equation. Within the framework of Euler-Lagrange equations we specify an operator on the boundary whose zero set consists precisely of those boundary data for which the initial problem is solvable. The construction of such operator has much in common with that of the familiar Dirichlet to Neumann operator. In the case of linear problems we establish complete results.

An expansion for a class of functions is called stable if the partial sums are bounded uniformly in the class. Stable expansions are of key importance in numerical analysis where functions are given up to certain error. We show that expansions in homogeneous functions are always stable on a small ball around the origin, and evaluate the radius of the largest ball with this property.

In 1914 Bohr proved that there is an r ∈ (0, 1) such that if a power series converges in the unit disk and its sum has modulus less than 1 then, for |z| < r, the sum of absolute values of its terms is again less than 1. Recently analogous results were obtained for functions of several variables. The aim of this paper is to comprehend the theorem of Bohr in the context of solutions to second order elliptic equations meeting the maximum principle.