• Deutsch

University Logo

  • Home
  • Search
  • Browse
  • Submit
  • Sitemap
Schließen

Refine

Has Fulltext

  • yes (2) (remove)

Author

  • Saalfrank, Peter (2) (remove)

Year of publication

  • 2016 (2) (remove)

Keywords

  • dynamics (1)
  • fine-structure (1)
  • graphene (1)
  • molecules (1)
  • ray absorption-spectroscopy (1)
  • salts (1)
  • simulations (1)
  • spectra (1)
  • surface (1)

Institute

  • Institut für Chemie (2) (remove)

2 search hits

  • 1 to 2
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Characterization of water dissociation on α-Al2O3(1102) (2016)
Wirth, Jonas ; Kirsch, Harald ; Wlosczyk, Sebastian ; Tong, Yujin ; Saalfrank, Peter ; Kramer Campen, Richard
The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(1[1 with combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1–4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schrödinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm−1. Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable.
A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids (2016)
Ehlert, Christopher ; Holzweber, Markus ; Lippitz, Andreas ; Unger, Wolfgang E. S. ; Saalfrank, Peter
In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+[NTf2]- and [C4C1im]+[I]-). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra.
  • 1 to 2

OPUS4 Logo  KOBV Logo  OAI Logo  DINI Zertifikat 2007  OA Netzwerk Logo

  • Institutional Repository
  • University Press
  • University Bibliography
  • University Library
  • Policy
  • Contact
  • Disclaimer
  • Imprint
  • Datenschutzerklärung

Login