### Refine

#### Year of publication

- 2020 (28)
- 2019 (32)
- 2018 (17)
- 2017 (24)
- 2016 (70)
- 2015 (63)
- 2014 (54)
- 2013 (63)
- 2012 (60)
- 2011 (38)
- 2010 (44)
- 2009 (43)
- 2008 (25)
- 2007 (24)
- 2006 (78)
- 2005 (102)
- 2004 (86)
- 2003 (72)
- 2002 (79)
- 2001 (103)
- 2000 (94)
- 1999 (122)
- 1998 (129)
- 1997 (122)
- 1996 (73)
- 1995 (102)
- 1994 (77)
- 1993 (16)
- 1992 (19)
- 1991 (5)
- 1990 (1)
- 1980 (1)

#### Document Type

- Article (841)
- Monograph/Edited Volume (426)
- Preprint (378)
- Doctoral Thesis (134)
- Other (37)
- Postprint (25)
- Review (13)
- Conference Proceeding (7)
- Part of a Book (3)
- Master's Thesis (3)

#### Language

- English (1603)
- German (253)
- French (7)
- Italian (3)
- Multiple Languages (1)

#### Keywords

- random point processes (19)
- statistical mechanics (19)
- stochastic analysis (19)
- index (13)
- boundary value problems (12)
- Fredholm property (10)
- cluster expansion (9)
- elliptic operators (9)
- K-theory (7)
- manifolds with singularities (7)

#### Institute

- Institut für Mathematik (1867) (remove)

A term t is linear if no variable occurs more than once in t. An identity s ≈ t is said to be linear if s and t are linear terms. Identities are particular formulas. As for terms superposition operations can be defined for formulas too. We define the arbitrary linear formulas and seek for a condition for the set of all linear formulas to be closed under superposition. This will be used to define the partial superposition operations on the set of linear formulas and a partial many-sorted algebra Formclonelin(τ, τ′). This algebra has similar properties with the partial many-sorted clone of all linear terms. We extend the concept of a hypersubstitution of type τ to the linear hypersubstitutions of type (τ, τ′) for algebraic systems. The extensions of linear hypersubstitutions of type (τ, τ′) send linear formulas to linear formulas, presenting weak endomorphisms of Formclonelin(τ, τ′).

Europa Universalis IV
(2020)

Particle filters contain the promise of fully nonlinear data assimilation. They have been applied in numerous science areas, including the geosciences, but their application to high-dimensional geoscience systems has been limited due to their inefficiency in high-dimensional systems in standard settings. However, huge progress has been made, and this limitation is disappearing fast due to recent developments in proposal densities, the use of ideas from (optimal) transportation, the use of localization and intelligent adaptive resampling strategies. Furthermore, powerful hybrids between particle filters and ensemble Kalman filters and variational methods have been developed. We present a state-of-the-art discussion of present efforts of developing particle filters for high-dimensional nonlinear geoscience state-estimation problems, with an emphasis on atmospheric and oceanic applications, including many new ideas, derivations and unifications, highlighting hidden connections, including pseudo-code, and generating a valuable tool and guide for the community. Initial experiments show that particle filters can be competitive with present-day methods for numerical weather prediction, suggesting that they will become mainstream soon.

On a smooth complete Riemannian spin manifold with smooth compact boundary, we demonstrate that Atiyah-Singer Dirac operator in depends Riesz continuously on perturbations of local boundary conditions The Lipschitz bound for the map depends on Lipschitz smoothness and ellipticity of and bounds on Ricci curvature and its first derivatives as well as a lower bound on injectivity radius away from a compact neighbourhood of the boundary. More generally, we prove perturbation estimates for functional calculi of elliptic operators on manifolds with local boundary conditions.

This thesis aims at presenting in an organized fashion the required basics to understand the Glauber dynamics as a way of simulating configurations according to the Gibbs distribution of the Curie-Weiss Potts model. Therefore, essential aspects of discrete-time Markov chains on a finite state space are examined, especially their convergence behavior and related mixing times. Furthermore, special emphasis is placed on a consistent and comprehensive presentation of the Curie-Weiss Potts model and its analysis. Finally, the Glauber dynamics is studied in general and applied afterwards in an exemplary way to the Curie-Weiss model as well as the Curie-Weiss Potts model. The associated considerations are supplemented with two computer simulations aiming to show the cutoff phenomenon and the temperature dependence of the convergence behavior.

Im Jahre 1960 behauptete Yamabe folgende Aussage bewiesen zu haben: Auf jeder kompakten Riemannschen Mannigfaltigkeit (M,g) der Dimension n ≥ 3 existiert eine zu g konform äquivalente Metrik mit konstanter Skalarkrümmung. Diese Aussage ist äquivalent zur Existenz einer Lösung einer bestimmten semilinearen elliptischen Differentialgleichung, der Yamabe-Gleichung. 1968 fand Trudinger einen Fehler in seinem Beweis und infolgedessen beschäftigten sich viele Mathematiker mit diesem nach Yamabe benannten Yamabe-Problem. In den 80er Jahren konnte durch die Arbeiten von Trudinger, Aubin und Schoen gezeigt werden, dass diese Aussage tatsächlich zutrifft. Dadurch ergeben sich viele Vorteile, z.B. kann beim Analysieren von konform invarianten partiellen Differentialgleichungen auf kompakten Riemannschen Mannigfaltigkeiten die Skalarkrümmung als konstant vorausgesetzt werden.
Es stellt sich nun die Frage, ob die entsprechende Aussage auch auf Lorentz-Mannigfaltigkeiten gilt. Das Lorentz'sche Yamabe Problem lautet somit: Existiert zu einer gegebenen räumlich kompakten global-hyperbolischen Lorentz-Mannigfaltigkeit (M,g) eine zu g konform äquivalente Metrik mit konstanter Skalarkrümmung? Das Ziel dieser Arbeit ist es, dieses Problem zu untersuchen.
Bei der sich aus dieser Fragestellung ergebenden Yamabe-Gleichung handelt es sich um eine semilineare Wellengleichung, deren Lösung eine positive glatte Funktion ist und aus der sich der konforme Faktor ergibt. Um die für die Behandlung des Yamabe-Problems benötigten Grundlagen so allgemein wie möglich zu halten, wird im ersten Teil dieser Arbeit die lokale Existenztheorie für beliebige semilineare Wellengleichungen für Schnitte auf Vektorbündeln im Rahmen eines Cauchy-Problems entwickelt. Hierzu wird der Umkehrsatz für Banachräume angewendet, um mithilfe von bereits existierenden Existenzergebnissen zu linearen Wellengleichungen, Existenzaussagen zu semilinearen Wellengleichungen machen zu können. Es wird bewiesen, dass, falls die Nichtlinearität bestimmte Bedingungen erfüllt, eine fast zeitglobale Lösung des Cauchy-Problems für kleine Anfangsdaten sowie eine zeitlokale Lösung für beliebige Anfangsdaten existiert.
Der zweite Teil der Arbeit befasst sich mit der Yamabe-Gleichung auf global-hyperbolischen Lorentz-Mannigfaltigkeiten. Zuerst wird gezeigt, dass die Nichtlinearität der Yamabe-Gleichung die geforderten Bedingungen aus dem ersten Teil erfüllt, so dass, falls die Skalarkrümmung der gegebenen Metrik nahe an einer Konstanten liegt, kleine Anfangsdaten existieren, so dass die Yamabe-Gleichung eine fast zeitglobale Lösung besitzt. Mithilfe von Energieabschätzungen wird anschließend für 4-dimensionale global-hyperbolische Lorentz-Mannigfaltigkeiten gezeigt, dass unter der Annahme, dass die konstante Skalarkrümmung der konform äquivalenten Metrik nichtpositiv ist, eine zeitglobale Lösung der Yamabe-Gleichung existiert, die allerdings nicht notwendigerweise positiv ist. Außerdem wird gezeigt, dass, falls die H2-Norm der Skalarkrümmung bezüglich der gegebenen Metrik auf einem kompakten Zeitintervall auf eine bestimmte Weise beschränkt ist, die Lösung positiv auf diesem Zeitintervall ist. Hierbei wird ebenfalls angenommen, dass die konstante Skalarkrümmung der konform äquivalenten Metrik nichtpositiv ist. Falls zusätzlich hierzu gilt, dass die Skalarkrümmung bezüglich der gegebenen Metrik negativ ist und die Metrik gewisse Bedingungen erfüllt, dann ist die Lösung für alle Zeiten in einem kompakten Zeitintervall positiv, auf dem der Gradient der Skalarkrümmung auf eine bestimmte Weise beschränkt ist. In beiden Fällen folgt unter den angeführten Bedingungen die Existenz einer zeitglobalen positiven Lösung, falls M = I x Σ für ein beschränktes offenes Intervall I ist. Zum Schluss wird für M = R x Σ ein Beispiel für die Nichtexistenz einer globalen positiven Lösung angeführt.

In this paper, we present the convergence rate analysis of the modified Landweber method under logarithmic source condition for nonlinear ill-posed problems. The regularization parameter is chosen according to the discrepancy principle. The reconstructions of the shape of an unknown domain for an inverse potential problem by using the modified Landweber method are exhibited.

Tomographic Reservoir Imaging with DNA-Labeled Silica Nanotracers: The First Field Validation
(2018)

This study presents the first field validation of using DNA-labeled silica nanoparticles as tracers to image subsurface reservoirs by travel time based tomography. During a field campaign in Switzerland, we performed short-pulse tracer tests under a forced hydraulic head gradient to conduct a multisource-multireceiver tracer test and tomographic inversion, determining the two-dimensional hydraulic conductivity field between two vertical wells. Together with three traditional solute dye tracers, we injected spherical silica nanotracers, encoded with synthetic DNA molecules, which are protected by a silica layer against damage due to chemicals, microorganisms, and enzymes. Temporal moment analyses of the recorded tracer concentration breakthrough curves (BTCs) indicate higher mass recovery, less mean residence time, and smaller dispersion of the DNA-labeled nanotracers, compared to solute dye tracers. Importantly, travel time based tomography, using nanotracer BTCs, yields a satisfactory hydraulic conductivity tomogram, validated by the dye tracer results and previous field investigations. These advantages of DNA-labeled nanotracers, in comparison to traditional solute dye tracers, make them well-suited for tomographic reservoir characterizations in fields such as hydrogeology, petroleum engineering, and geothermal energy, particularly with respect to resolving preferential flow paths or the heterogeneity of contact surfaces or by enabling source zone characterizations of dense nonaqueous phase liquids.

Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu
(2019)

C-type asteroids are among the most pristine objects in the Solar System, but little is known about their interior structure and surface properties. Telescopic thermal infrared observations have so far been interpreted in terms of a regolith-covered surface with low thermal conductivity and particle sizes in the centimetre range. This includes observations of C-type asteroid (162173) Ryugu1,2,3. However, on arrival of the Hayabusa2 spacecraft at Ryugu, a regolith cover of sand- to pebble-sized particles was found to be absent4,5 (R.J. et al., manuscript in preparation). Rather, the surface is largely covered by cobbles and boulders, seemingly incompatible with the remote-sensing infrared observations. Here we report on in situ thermal infrared observations of a boulder on the C-type asteroid Ryugu. We found that the boulder’s thermal inertia was much lower than anticipated based on laboratory measurements of meteorites, and that a surface covered by such low-conductivity boulders would be consistent with remote-sensing observations. Our results furthermore indicate high boulder porosities as well as a low tensile strength in the few hundred kilopascal range. The predicted low tensile strength confirms the suspected observational bias6 in our meteorite collections, as such asteroidal material would be too frail to survive atmospheric entry7

This paper concerns the problem of predicting the maximum expected earthquake magnitude μ in a future time interval Tf given a catalog covering a time period T in the past. Different studies show the divergence of the confidence interval of the maximum possible earthquake magnitude m_{ max } for high levels of confidence (Salamat et al. 2017). Therefore, m_{ max } should be better replaced by μ (Holschneider et al. 2011). In a previous study (Salamat et al. 2018), μ is estimated for an instrumental earthquake catalog of Iran from 1900 onwards with a constant level of completeness ( {m0 = 5.5} ). In the current study, the Bayesian methodology developed by Zöller et al. (2014, 2015) is applied for the purpose of predicting μ based on the catalog consisting of both historical and instrumental parts. The catalog is first subdivided into six subcatalogs corresponding to six seismotectonic zones, and each of those zone catalogs is subsequently subdivided according to changes in completeness level and magnitude uncertainty. For this, broad and small error distributions are considered for historical and instrumental earthquakes, respectively. We assume that earthquakes follow a Poisson process in time and Gutenberg-Richter law in the magnitude domain with a priori unknown a and b values which are first estimated by Bayes' theorem and subsequently used to estimate μ. Imposing different values of m_{ max } for different seismotectonic zones namely Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh and Makran, the results show considerable probabilities for the occurrence of earthquakes with Mw ≥ 7.5 in short Tf , whereas for long Tf, μ is almost equal to m_{ max }

This paper presents a scalable E-band radar platform based on single-channel fully integrated transceivers (TRX) manufactured using 130-nm silicon-germanium (SiGe) BiCMOS technology. The TRX is suitable for flexible radar systems exploiting massive multiple-input-multipleoutput (MIMO) techniques for multidimensional sensing. A fully integrated fractional-N phase-locked loop (PLL) comprising a 39.5-GHz voltage-controlled oscillator is used to generate wideband frequency-modulated continuous-wave (FMCW) chirp for E-band radar front ends. The TRX is equipped with a vector modulator (VM) for high-speed carrier modulation and beam-forming techniques. A single TRX achieves 19.2-dBm maximum output power and 27.5-dB total conversion gain with input-referred 1-dB compression point of -10 dBm. It consumes 220 mA from 3.3-V supply and occupies 3.96 mm(2) silicon area. A two-channel radar platform based on full-custom TRXs and PLL was fabricated to demonstrate high-precision and high-resolution FMCW sensing. The radar enables up to 10-GHz frequency ramp generation in 74-84-GHz range, which results in 1.5-cm spatial resolution. Due to high output power, thus high signal-to-noise ratio (SNR), a ranging precision of 7.5 mu m for a target at 2 m was achieved. The proposed architecture supports scalable multichannel applications for automotive FMCW using a single local oscillator (LO).

Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu
(2019)

C-type asteroids are among the most pristine objects in the Solar System, but little is known about their interior structure and surface properties. Telescopic thermal infrared observations have so far been interpreted in terms of a regolith-covered surface with low thermal conductivity and particle sizes in the centimetre range. This includes observations of C-type asteroid (162173) Ryugu1,2,3. However, on arrival of the Hayabusa2 spacecraft at Ryugu, a regolith cover of sand- to pebble-sized particles was found to be absent4,5 (R.J. et al., manuscript in preparation). Rather, the surface is largely covered by cobbles and boulders, seemingly incompatible with the remote-sensing infrared observations. Here we report on in situ thermal infrared observations of a boulder on the C-type asteroid Ryugu. We found that the boulder’s thermal inertia was much lower than anticipated based on laboratory measurements of meteorites, and that a surface covered by such low-conductivity boulders would be consistent with remote-sensing observations. Our results furthermore indicate high boulder porosities as well as a low tensile strength in the few hundred kilopascal range. The predicted low tensile strength confirms the suspected observational bias6 in our meteorite collections, as such asteroidal material would be too frail to survive atmospheric entry7.

A zig-zag (or fence) order is a special partial order on a (finite) set. In this paper, we consider the semigroup TFn of all order-preserving transformations on an n-element zig-zag-ordered set. We determine the rank of TFn and provide a minimal generating set for TFn. Moreover, a formula for the number of idempotents in TFn is given.

We prove a version of the Hopf-Rinow theorem with respect to path metrics on discrete spaces. The novel aspect is that we do not a priori assume local finiteness but isolate a local finiteness type condition, called essentially locally finite, that is indeed necessary. As a side product we identify the maximal weight, called the geodesic weight, generating the path metric in the situation when the space is complete with respect to any of the equivalent notions of completeness proven in the Hopf-Rinow theorem. As an application we characterize the graphs for which the resistance metric is a path metric induced by the graph structure.

The Willmore functional is a function that maps an immersed Riemannian manifold to its total mean curvature. Finding closed surfaces that minimizes the Willmore energy, or more generally finding critical surfaces, is a classic problem of differential geometry.
In this thesis we will develop the concept of generalized Willmore functionals for surfaces in Riemannian manifolds. We are guided by models in mathematical physics, such as the Hawking energy of general relativity and the bending energies for thin membranes.
We prove the existence of minimizers under area constraint for these generalized Willmore functionals in a suitable class of generalized surfaces. In particular, we construct minimizers of the bending energy mentioned above for prescribed area and enclosed volume.
Furthermore, we prove that critical surfaces of generalized Willmore functionals with prescribed area are smooth, away from finitely many points. These results and the following are based on the existing theory for the Willmore functional.
This general discussion is succeeded by a detailed analysis of the Hawking energy. In the context of general relativity the surrounding manifold describes the space at a given time, hence we strive to understand the interplay between the Hawking energy and the ambient space. We characterize points in the surrounding manifold for which there are small critical spheres with prescribed area in any neighborhood. These points are interpreted as concentration points of the Hawking energy.
Additionally, we calculate an expansion of the Hawking energy on small, round spheres. This allows us to identify a kind of energy density of the Hawking energy.
It needs to be mentioned that our results stand in contrast to previous expansions of the Hawking energy. However, these expansions are obtained on spheres along the light cone at a given point. At this point it is not clear how to explain the discrepancy.
Finally, we consider asymptotically Schwarzschild manifolds. They are a special case of asymptotically flat manifolds, which serf as models for isolated systems. The Schwarzschild spacetime itself is a classical solution to the Einstein equations and yields a simple description of a black hole.
In these asymptotically Schwarzschild manifolds we construct a foliation of the exterior region by critical spheres of the Hawking energy with prescribed large area. This foliation can be seen as a generalized notion of the center of mass of the isolated system. Additionally, the Hawking energy of grows along the foliation as the area of the surfaces grows.

We study elements of the calculus of boundary value problems in a variant of Boutet de Monvel’s algebra (Acta Math 126:11–51, 1971) on a manifold N with edge and boundary. If the boundary is empty then the approach corresponds to Schulze (Symposium on partial differential equations (Holzhau, 1988), BSB Teubner, Leipzig, 1989) and other papers from the subsequent development. For non-trivial boundary we study Mellin-edge quantizations and compositions within the structure in terms a new Mellin-edge quantization, compared with a more traditional technique. Similar structures in the closed case have been studied in Gil et al.

The majority of earthquakes occur unexpectedly and can trigger subsequent sequences of events that can culminate in more powerful earthquakes. This self-exciting nature of seismicity generates complex clustering of earthquakes in space and time. Therefore, the problem of constraining the magnitude of the largest expected earthquake during a future time interval is of critical importance in mitigating earthquake hazard. We address this problem by developing a methodology to compute the probabilities for such extreme earthquakes to be above certain magnitudes. We combine the Bayesian methods with the extreme value theory and assume that the occurrence of earthquakes can be described by the Epidemic Type Aftershock Sequence process. We analyze in detail the application of this methodology to the 2016 Kumamoto, Japan, earthquake sequence. We are able to estimate retrospectively the probabilities of having large subsequent earthquakes during several stages of the evolution of this sequence.

We show that the Dirac operator on a compact globally hyperbolic Lorentzian spacetime with spacelike Cauchy boundary is a Fredholm operator if appropriate boundary conditions are imposed. We prove that the index of this operator is given by the same expression as in the index formula of Atiyah-Patodi-Singer for Riemannian manifolds with boundary. The index is also shown to equal that of a certain operator constructed from the evolution operator and a spectral projection on the boundary. In case the metric is of product type near the boundary a Feynman parametrix is constructed.

Tasking machine learning to predict segments of a time series requires estimating the parameters of a ML model with input/output pairs from the time series. We borrow two techniques used in statistical data assimilation in order to accomplish this task: time-delay embedding to prepare our input data and precision annealing as a training method. The precision annealing approach identifies the global minimum of the action (-log[P]). In this way, we are able to identify the number of training pairs required to produce good generalizations (predictions) for the time series. We proceed from a scalar time series s(tn);tn=t0+n Delta t and, using methods of nonlinear time series analysis, show how to produce a DE>1-dimensional time-delay embedding space in which the time series has no false neighbors as does the observed s(tn) time series. In that DE-dimensional space, we explore the use of feedforward multilayer perceptrons as network models operating on DE-dimensional input and producing DE-dimensional outputs.

We generalise disagreement percolation to Gibbs point processes of balls with varying radii. This allows to establish the uniqueness of the Gibbs measure and exponential decay of pair correlations in the low activity regime by comparison with a sub-critical Boolean model. Applications to the Continuum Random Cluster model and the Quermass-interaction model are presented. At the core of our proof lies an explicit dependent thinning from a Poisson point process to a dominated Gibbs point process. (C) 2018 Elsevier B.V. All rights reserved.

We obtain a Bernstein-type inequality for sums of Banach-valued random variables satisfying a weak dependence assumption of general type and under certain smoothness assumptions of the underlying Banach norm. We use this inequality in order to investigate in the asymptotical regime the error upper bounds for the broad family of spectral regularization methods for reproducing kernel decision rules, when trained on a sample coming from a tau-mixing process.

We study the spectral location of a strongly pattern equivariant Hamiltonians arising through configurations on a colored lattice. Roughly speaking, two configurations are "close to each other" if, up to a translation, they "almost coincide" on a large fixed ball. The larger this ball, the more similar they are, and this induces a metric on the space of the corresponding dynamical systems. Our main result states that the map which sends a given configuration into the spectrum of its associated Hamiltonian, is Holder (even Lipschitz) continuous in the usual Hausdorff metric. Specifically, the spectral distance of two Hamiltonians is estimated by the distance of the corresponding dynamical systems.

Probabilistic integration of a continuous dynamical system is a way of systematically introducing discretisation error, at scales no larger than errors introduced by standard numerical discretisation, in order to enable thorough exploration of possible responses of the system to inputs. It is thus a potentially useful approach in a number of applications such as forward uncertainty quantification, inverse problems, and data assimilation. We extend the convergence analysis of probabilistic integrators for deterministic ordinary differential equations, as proposed by Conrad et al. (Stat Comput 27(4):1065-1082, 2017. ), to establish mean-square convergence in the uniform norm on discrete- or continuous-time solutions under relaxed regularity assumptions on the driving vector fields and their induced flows. Specifically, we show that randomised high-order integrators for globally Lipschitz flows and randomised Euler integrators for dissipative vector fields with polynomially bounded local Lipschitz constants all have the same mean-square convergence rate as their deterministic counterparts, provided that the variance of the integration noise is not of higher order than the corresponding deterministic integrator. These and similar results are proven for probabilistic integrators where the random perturbations may be state-dependent, non-Gaussian, or non-centred random variables.

We construct eta- and rho-invariants for Dirac operators, on the universal covering of a closed manifold, that are invariant under the projective action associated to a 2-cocycle of the fundamental group. We prove an Atiyah-Patodi-Singer index theorem in this setting, as well as its higher generalisation. Applications concern the classification of positive scalar curvature metrics on closed spin manifolds. We also investigate the properties of these twisted invariants for the signature operator and the relation to the higher invariants.

We present new conditions for semigroups of positive operators to converge strongly as time tends to infinity. Our proofs are based on a novel approach combining the well-known splitting theorem by Jacobs, de Leeuw, and Glicksberg with a purely algebraic result about positive group representations. Thus, we obtain convergence theorems not only for one-parameter semigroups but also for a much larger class of semigroup representations. Our results allow for a unified treatment of various theorems from the literature that, under technical assumptions, a bounded positive C-0-semigroup containing or dominating a kernel operator converges strongly as t ->infinity. We gain new insights into the structure theoretical background of those theorems and generalize them in several respects; especially we drop any kind of continuity or regularity assumption with respect to the time parameter.

We prove the Fréchet differentiability with respect to the drift of Perron–Frobenius and Koopman operators associated to time-inhomogeneous ordinary stochastic differential equations. This result relies on a similar differentiability result for pathwise expectations of path functionals of the solution of the stochastic differential equation, which we establish using Girsanov's formula. We demonstrate the significance of our result in the context of dynamical systems and operator theory, by proving continuously differentiable drift dependence of the simple eigen- and singular values and the corresponding eigen- and singular functions of the stochastic Perron–Frobenius and Koopman operators.

Our first result concerns a characterization by means of a functional equation of Poisson point processes conditioned by the value of their first moment. It leads to a generalized version of Mecke’s formula. En passant, it also allows us to gain quantitative results about stochastic domination for Poisson point processes under linear constraints. Since bridges of a pure jump Lévy process in Rd with a height a can be interpreted as a Poisson point process on space–time conditioned by pinning its first moment to a, our approach allows us to characterize bridges of Lévy processes by means of a functional equation. The latter result has two direct applications: First, we obtain a constructive and simple way to sample Lévy bridge dynamics; second, it allows us to estimate the number of jumps for such bridges. We finally show that our method remains valid for linearly perturbed Lévy processes like periodic Ornstein–Uhlenbeck processes driven by Lévy noise.

The accepted idea that there exists an inherent finite-time barrier in deterministically predicting atmospheric flows originates from Edward N. Lorenz’s 1969 work based on two-dimensional (2D) turbulence. Yet, known analytic results on the 2D Navier–Stokes (N-S) equations suggest that one can skillfully predict the 2D N-S system indefinitely far ahead should the initial-condition error become sufficiently small, thereby presenting a potential conflict with Lorenz’s theory. Aided by numerical simulations, the present work reexamines Lorenz’s model and reviews both sides of the argument, paying particular attention to the roles played by the slope of the kinetic energy spectrum. It is found that when this slope is shallower than −3, the Lipschitz continuity of analytic solutions (with respect to initial conditions) breaks down as the model resolution increases, unless the viscous range of the real system is resolved—which remains practically impossible. This breakdown leads to the inherent finite-time limit. If, on the other hand, the spectral slope is steeper than −3, then the breakdown does not occur. In this way, the apparent contradiction between the analytic results and Lorenz’s theory is reconciled.

We develop a technique for the multivariate data analysis of perturbed self-sustained oscillators. The approach is based on the reconstruction of the phase dynamics model from observations and on a subsequent exploration of this model. For the system, driven by several inputs, we suggest a dynamical disentanglement procedure, allowing us to reconstruct the variability of the system's output that is due to a particular observed input, or, alternatively, to reconstruct the variability which is caused by all the inputs except for the observed one. We focus on the application of the method to the vagal component of the heart rate variability caused by a respiratory influence. We develop an algorithm that extracts purely respiratory-related variability, using a respiratory trace and times of R-peaks in the electrocardiogram. The algorithm can be applied to other systems where the observed bivariate data can be represented as a point process and a slow continuous signal, e.g. for the analysis of neuronal spiking. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.

This thesis is concerned with Data Assimilation, the process of combining model predictions with observations. So called filters are of special interest. One is inter- ested in computing the probability distribution of the state of a physical process in the future, given (possibly) imperfect measurements. This is done using Bayes’ rule. The first part focuses on hybrid filters, that bridge between the two main groups of filters: ensemble Kalman filters (EnKF) and particle filters. The first are a group of very stable and computationally cheap algorithms, but they request certain strong assumptions. Particle filters on the other hand are more generally applicable, but computationally expensive and as such not always suitable for high dimensional systems. Therefore it exists a need to combine both groups to benefit from the advantages of each. This can be achieved by splitting the likelihood function, when assimilating a new observation and treating one part of it with an EnKF and the other part with a particle filter.
The second part of this thesis deals with the application of Data Assimilation to multi-scale models and the problems that arise from that. One of the main areas of application for Data Assimilation techniques is predicting the development of oceans and the atmosphere. These processes involve several scales and often balance rela- tions between the state variables. The use of Data Assimilation procedures most often violates relations of that kind, which leads to unrealistic and non-physical pre- dictions of the future development of the process eventually. This work discusses the inclusion of a post-processing step after each assimilation step, in which a minimi- sation problem is solved, which penalises the imbalance. This method is tested on four different models, two Hamiltonian systems and two spatially extended models, which adds even more difficulties.

Large emissions
(2020)

Pinned Gibbs processes
(2020)

The XI international conference Stochastic and Analytic Methods in Mathematical Physics was held in Yerevan 2 – 7 September 2019 and was dedicated to the memory of the great mathematician Robert Adol’fovich Minlos, who passed away in January 2018.
The present volume collects a large majority of the contributions presented at the conference on the following domains of contemporary interest: classical and quantum statistical physics, mathematical methods in quantum mechanics, stochastic analysis, applications of point processes in statistical mechanics. The authors are specialists from Armenia, Czech Republic, Denmark, France, Germany, Italy, Japan, Lithuania, Russia, UK and Uzbekistan.
A particular aim of this volume is to offer young scientists basic material in order to inspire their future research in the wide fields presented here.

Hypersubstitutions are mappings which map operation symbols to terms. Terms can be visualized by trees. Hypersubstitutions can be extended to mappings defined on sets of trees. The nodes of the trees, describing terms, are labelled by operation symbols and by colors, i.e. certain positive integers. We are interested in mappings which map differently-colored operation symbols to different terms. In this paper we extend the theory of hypersubstitutions and solid varieties to multi-hypersubstitutions and colored solid varieties. We develop the interconnections between such colored terms and multihypersubstitutions and the equational theory of Universal Algebra. The collection of all varieties of a given type forms a complete lattice which is very complex and difficult to study; multi-hypersubstitutions and colored solid varieties offer a new method to study complete sublattices of this lattice.

The efficient time integration of the dynamic core equations for numerical weather prediction (NWP) remains a key challenge. One of the most popular methods is currently provided by implementations of the semi-implicit semi-Lagrangian (SISL) method, originally proposed by Robert (J. Meteorol. Soc. Jpn., 1982). Practical implementations of the SISL method are, however, not without certain shortcomings with regard to accuracy, conservation properties and stability. Based on recent work by Gottwald, Frank and Reich (LNCSE, Springer, 2002), Frank, Reich, Staniforth, White and Wood (Atm. Sci. Lett., 2005) and Wood, Staniforth and Reich (Atm. Sci. Lett., 2006) we propose an alternative semi-Lagrangian implementation based on a set of regularized equations and the popular Stormer-Verlet time stepping method in the context of the shallow-water equations (SWEs). Ultimately, the goal is to develop practical implementations for the 3D Euler equations that overcome some or all shortcomings of current SISL implementations.

In this study we present iterative regularization methods using rational approximations, in particular, Pade approximants, which work well for ill-posed problems. We prove that the (k,j)-Pade method is a convergent and order optimal iterative regularization method in using the discrepancy principle of Morozov. Furthermore, we present a hybrid Pade method, compare it with other well-known methods and found that it is faster than the Landweber method. It is worth mentioning that this study is a completion of the paper [A. Kirsche, C. Bockmann, Rational approximations for ill-conditioned equation systems, Appl. Math. Comput. 171 (2005) 385-397] where this method was treated to solve ill-conditioned equation systems. (c) 2006 Elsevier Inc. All rights reserved.

A time-staggered semi-Lagrangian discretization of the rotating shallow-water equations is proposed and analysed. Application of regularization to the geopotential field used in the momentum equations leads to an unconditionally stable scheme. The analysis, together with a fully nonlinear example application, suggests that this approach is a promising, efficient, and accurate alternative to traditional schemes.

We study mixed boundary value problems for an elliptic operator A on a manifold X with boundary Y, i.e., Au = f in int X, T (+/-) u = g(+/-) on int Y+/-, where Y is subdivided into subsets Y+/- with an interface Z and boundary conditions T+/- on Y+/- that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume that Z subset of Y is a manifold with conical singularity v. As an example we consider the Zaremba problem, where A is the Laplacian and T- Dirichlet, T+ Neumann conditions. The problem is treated as a corner boundary value problem near v which is the new point and the main difficulty in this paper. Outside v the problem belongs to the edge calculus as is shown in Bull. Sci. Math. ( to appear). With a mixed problem we associate Fredholm operators in weighted corner Sobolev spaces with double weights, under suitable edge conditions along Z {v} of trace and potential type. We construct parametrices within the calculus and establish the regularity of solutions.

Background Evolution of metastatic melanoma (MM) under B-RAF inhibitors (BRAFi) is unpredictable, but anticipation is crucial for therapeutic decision. Kinetics changes in metastatic growth are driven by molecular and immune events, and thus we hypothesized that they convey relevant information for decision making. Patients and methods We used a retrospective cohort of 37 MM patients treated by BRAFi only with at least 2 close CT-scans available before BRAFi, as a model to study kinetics of metastatic growth before, under and after BRAFi. All metastases (mets) were individually measured at each CT-scan. From these measurements, different measures of growth kinetics of each met and total tumor volume were computed at different time points. A historical cohort permitted to build a reference model for the expected spontaneous disease kinetics without BRAFi. All variables were included in Cox and multistate regression models for survival, to select best candidates for predicting overall survival. Results Before starting BRAFi, fast kinetics and moreover a wide range of kinetics (fast and slow growing mets in a same patient) were pejorative markers. At the first assessment after BRAFi introduction, high heterogeneity of kinetics predicted short survival, and added independent information over RECIST progression in multivariate analysis. Metastatic growth rates after BRAFi discontinuation was usually not faster than before BRAFi introduction, but they were often more heterogeneous than before. Conclusions Monitoring kinetics of different mets before and under BRAFi by repeated CT-scan provides information for predictive mathematical modelling. Disease kinetics deserves more interest

Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model
(2017)

Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts.

Maximal subsemigroups of some semigroups of order-preserving mappings on a countably infinite set
(2017)

In this paper, we study the maximal subsemigroups of several semigroups of order-preserving transformations on the natural numbers and the integers, respectively. We determine all maximal subsemigroups of the monoid of all order-preserving injections on the set of natural numbers as well as on the set of integers. Further, we give all maximal subsemigroups of the monoid of all bijections on the integers. For the monoid of all order-preserving transformations on the natural numbers, we classify also all its maximal subsemigroups, containing a particular set of transformations.

This article presents a new and easily implementable method to quantify the so-called coupling distance between the law of a time series and the law of a differential equation driven by Markovian additive jump noise with heavy-tailed jumps, such as a-stable Levy flights. Coupling distances measure the proximity of the empirical law of the tails of the jump increments and a given power law distribution. In particular, they yield an upper bound for the distance of the respective laws on path space. We prove rates of convergence comparable to the rates of the central limit theorem which are confirmed by numerical simulations. Our method applied to a paleoclimate time series of glacial climate variability confirms its heavy tail behavior. In addition, this approach gives evidence for heavy tails in datasets of precipitable water vapor of the Western Tropical Pacific. Published by AIP Publishing.

Abelian duality is realized naturally by combining differential cohomology and locally covariant quantum field theory. This leads to a -algebra of observables, which encompasses the simultaneous discretization of both magnetic and electric fluxes. We discuss the assignment of physically well-behaved states on this algebra and the properties of the associated GNS triple. We show that the algebra of observables factorizes as a suitable tensor product of three -algebras: the first factor encodes dynamical information, while the other two capture topological data corresponding to electric and magnetic fluxes. On the former factor and in the case of ultra-static globally hyperbolic spacetimes with compact Cauchy surfaces, we exhibit a state whose two-point correlation function has the same singular structure of a Hadamard state. Specifying suitable counterparts also on the topological factors, we obtain a state for the full theory, ultimately implementing Abelian duality transformations as Hilbert space isomorphisms.

Prospective and retrospective evaluation of five-year earthquake forecast models for California
(2017)

Background: Cells are able to communicate and coordinate their function within tissues via secreted factors. Aberrant secretion by cancer cells can modulate this intercellular communication, in particular in highly organised tissues such as the liver. Hepatocytes, the major cell type of the liver, secrete Dickkopf (Dkk), which inhibits Wnt/beta-catenin signalling in an autocrine and paracrine manner. Consequently, Dkk modulates the expression of Wnt/beta-catenin target genes. We present a mathematical model that describes the autocrine and paracrine regulation of hepatic gene expression by Dkk under wild-type conditions as well as in the presence of mutant cells. Results: Our spatial model describes the competition of Dkk and Wnt at receptor level, intra-cellular Wnt/beta-catenin signalling, and the regulation of target gene expression for 21 individual hepatocytes. Autocrine and paracrine regulation is mediated through a feedback mechanism via Dkk and Dkk diffusion along the porto-central axis. Along this axis an APC concentration gradient is modelled as experimentally detected in liver. Simulations of mutant cells demonstrate that already a single mutant cell increases overall Dkk concentration. The influence of the mutant cell on gene expression of surrounding wild-type hepatocytes is limited in magnitude and restricted to hepatocytes in close proximity. To explore the underlying molecular mechanisms, we perform a comprehensive analysis of the model parameters such as diffusion coefficient, mutation strength and feedback strength. Conclusions: Our simulations show that Dkk concentration is elevated in the presence of a mutant cell. However, the impact of these elevated Dkk levels on wild-type hepatocytes is confined in space and magnitude. The combination of inter-and intracellular processes, such as Dkk feedback, diffusion and Wnt/beta-catenin signal transduction, allow wild-type hepatocytes to largely maintain their gene expression.

We introduce an abstract concept of quantum field theory on categories fibered in groupoids over the category of spacetimes. This provides us with a general and flexible framework to study quantum field theories defined on spacetimes with extra geometric structures such as bundles, connections and spin structures. Using right Kan extensions, we can assign to any such theory an ordinary quantum field theory defined on the category of spacetimes and we shall clarify under which conditions it satisfies the axioms of locally covariant quantum field theory. The same constructions can be performed in a homotopy theoretic framework by using homotopy right Kan extensions, which allows us to obtain first toy-models of homotopical quantum field theories resembling some aspects of gauge theories.

This paper is concerned with localization properties of coherent states. Instead of classical uncertainty relations we consider "generalized" localization quantities. This is done by introducing measures on the reproducing kernel. In this context we may prove the existence of optimally localized states. Moreover, we provide a numerical scheme for deriving them.

The aim of this paper is to express the Conley-Zehnder index of a symplectic path in terms of an index due to Leray and which has been studied by one of us in a previous work. This will allow us to prove a formula for the Conley-Zehnder index of the product of two symplectic paths in terms of a symplectic Cayley transform. We apply our results to a rigorous study of the Weyl representation of metaplectic operators, which plays a crucial role in the understanding of semiclassical quantization of Hamiltonian systems exhibiting chaotic behavior.

We prove the existence of sectors of minimal growth for general closed extensions of elliptic cone operators under natural ellipticity conditions. This is achieved by the construction of a suitable parametrix and reduction to the boundary. Special attention is devoted to the clarification of the analytic structure of the resolvent.

We construct equivariant KK-theory with coefficients in and R/Z as suitable inductive limits over II1-factors. We show that the Kasparov product, together with its usual functorial properties, extends to KK-theory with real coefficients. Let Gamma be a group. We define a Gamma-algebra A to be K-theoretically free and proper (KFP) if the group trace tr of Gamma acts as the unit element in KKR Gamma (A, A). We show that free and proper Gamma-algebras (in the sense of Kasparov) have the (KFP) property. Moreover, if Gamma is torsion free and satisfies the KK Gamma-form of the Baum-Connes conjecture, then every Gamma-algebra satisfies (KFP). If alpha : Gamma -> U-n is a unitary representation and A satisfies property (KFP), we construct in a canonical way a rho class rho(A)(alpha) is an element of KKR/Z1,Gamma (A A) This construction generalizes the Atiyah-Patodi-Singer K-theory class with R/Z-coefficients associated to alpha. (C) 2015 Elsevier Inc. All rights reserved.

Socio-political studies in mathematics education often touch complex fields of interaction between education, mathematics and the political. In this paper I present a Foucault-based framework for socio-political studies in mathematics education which may guide research in that area. In order to show the potential of such a framework, I discuss the potential and limits of Marxian ideology critique, present existing Foucault-based research on socio-political aspects of mathematics education, develop my framework and show its use in an outline of a study on socio-political aspects of calculation in the mathematics classroom.

For point processes we establish a link between integration-by-parts-and splitting-formulas which can also be considered as integration-by-parts-formulas of a new type. First we characterize finite Papangelou processes in terms of their splitting kernels. The main part then consists in extending these results to the case of infinitely extended Papangelou and, in particular, Polya and Gibbs processes. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

We analyze a general class of difference operators H-epsilon = T-epsilon + V-epsilon on l(2)(((epsilon)Z)(d)), where V-epsilon is a multi-well potential and epsilon is a small parameter. We construct approximate eigenfunctions in neighbourhoods of the different wells and give weighted l(2)-estimates for the difference of these and the exact eigenfunctions of the associated Dirichlet-operators.

In the present study, we summarize and evaluate the endeavors from recent years to estimate the maximum possible earthquake magnitude m(max) from observed data. In particular, we use basic and physically motivated assumptions to identify best cases and worst cases in terms of lowest and highest degree of uncertainty of m(max). In a general framework, we demonstrate that earthquake data and earthquake proxy data recorded in a fault zone provide almost no information about m(max) unless reliable and homogeneous data of a long time interval, including several earthquakes with magnitude close to m(max), are available. Even if detailed earthquake information from some centuries including historic and paleoearthquakes are given, only very few, namely the largest events, will contribute at all to the estimation of m(max), and this results in unacceptably high uncertainties. As a consequence, estimators of m(max) in a fault zone, which are based solely on earthquake-related information from this region, have to be dismissed.

The present paper is intended to provide the basis for the study of weakly differentiable functions on rectifiable varifolds with locally bounded first variation. The concept proposed here is defined by means of integration-by-parts identities for certain compositions with smooth functions. In this class, the idea of zero boundary values is realised using the relative perimeter of superlevel sets. Results include a variety of Sobolev Poincare-type embeddings, embeddings into spaces of continuous and sometimes Holder-continuous functions, and point wise differentiability results both of approximate and integral type as well as coarea formulae. As a prerequisite for this study, decomposition properties of such varifolds and a relative isoperimetric inequality are established. Both involve a concept of distributional boundary of a set introduced for this purpose. As applications, the finiteness of the geodesic distance associated with varifolds with suitable summability of the mean curvature and a characterisation of curvature varifolds are obtained.

This paper extends the multilevel Monte Carlo variance reduction technique to nonlinear filtering. In particular, multilevel Monte Carlo is applied to a certain variant of the particle filter, the ensemble transform particle filter (EPTF). A key aspect is the use of optimal transport methods to re-establish correlation between coarse and fine ensembles after resampling; this controls the variance of the estimator. Numerical examples present a proof of concept of the effectiveness of the proposed method, demonstrating significant computational cost reductions (relative to the single-level ETPF counterpart) in the propagation of ensembles.

Acyclicity constraints are prevalent in knowledge representation and applications where acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints related to recursive structures. In the technical results of the paper, we relate the new generalization with standard ASP by showing (i) how acyclicity extensions translate into normal rules, (ii) how weight constraint programs can be instrumented by acyclicity extensions to capture stability in analogy to unfounded set checking, and (iii) how the gap between supported and stable models is effectively closed in the presence of such an extension. Moreover, we present an efficient implementation of acyclicity constraints by incorporating a respective propagator into the state-of-the-art ASP solver CLASP. The implementation provides a unique combination of traditional unfounded set checking with acyclicity propagation. In the experimental part, we evaluate the interplay of these orthogonal checks by equipping logic programs with supplementary acyclicity constraints. The performance results show that native support for acyclicity constraints is a worthwhile addition, furnishing a complementary modeling construct in ASP itself as well as effective means for translation-based ASP solving.

This work is devoted to the convergence analysis of a modified Runge-Kutta-type iterative regularization method for solving nonlinear ill-posed problems under a priori and a posteriori stopping rules. The convergence rate results of the proposed method can be obtained under a Holder-type sourcewise condition if the Frechet derivative is properly scaled and locally Lipschitz continuous. Numerical results are achieved by using the Levenberg-Marquardt, Lobatto, and Radau methods.

In many real-world classification problems, the labels of training examples are randomly corrupted. Most previous theoretical work on classification with label noise assumes that the two classes are separable, that the label noise is independent of the true class label, or that the noise proportions for each class are known. In this work, we give conditions that are necessary and sufficient for the true class-conditional distributions to be identifiable. These conditions are weaker than those analyzed previously, and allow for the classes to be nonseparable and the noise levels to be asymmetric and unknown. The conditions essentially state that a majority of the observed labels are correct and that the true class-conditional distributions are "mutually irreducible," a concept we introduce that limits the similarity of the two distributions. For any label noise problem, there is a unique pair of true class-conditional distributions satisfying the proposed conditions, and we argue that this pair corresponds in a certain sense to maximal denoising of the observed distributions. Our results are facilitated by a connection to "mixture proportion estimation," which is the problem of estimating the maximal proportion of one distribution that is present in another. We establish a novel rate of convergence result for mixture proportion estimation, and apply this to obtain consistency of a discrimination rule based on surrogate loss minimization. Experimental results on benchmark data and a nuclear particle classification problem demonstrate the efficacy of our approach.

Using a global symbol calculus for pseudodifferential operators on tori, we build a canonical trace on classical pseudodifferential operators on noncommutative tori in terms of a canonical discrete sum on the underlying toroidal symbols. We characterise the canonical trace on operators on the noncommutative torus as well as its underlying canonical discrete sum on symbols of fixed (resp. any) noninteger order. On the grounds of this uniqueness result, we prove that in the commutative setup, this canonical trace on the noncommutative torus reduces to Kontsevich and Vishik's canonical trace which is thereby identified with a discrete sum. A similar characterisation for the noncommutative residue on noncommutative tori as the unique trace which vanishes on trace-class operators generalises Fathizadeh and Wong's characterisation in so far as it includes the case of operators of fixed integer order. By means of the canonical trace, we derive defect formulae for regularized traces. The conformal invariance of the $ \zeta $-function at zero of the Laplacian on the noncommutative torus is then a straightforward consequence.

We describe a natural construction of deformation quantization on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.

Let (M, g, k) be an initial data set for the Einstein equations of general relativity. We show that a canonical solution of the Jang equation exists in the complement of the union of all weakly future outer trapped regions in the initial data set with respect to a given end, provided that this complement contains no weakly past outer trapped regions. The graph of this solution relates the area of the horizon to the global geometry of the initial data set in a non-trivial way. We prove the existence of a Scherk-type solution of the Jang equation outside the union of all weakly future or past outer trapped regions in the initial data set. This result is a natural exterior analogue for the Jang equation of the classical Jenkins Serrin theory. We extend and complement existence theorems [19, 20, 40, 29, 18, 31, 11] for Scherk-type constant mean curvature graphs over polygonal domains in (M, g), where (M, g) is a complete Riemannian surface. We can dispense with the a priori assumptions that a sub solution exists and that (M, g) has particular symmetries. Also, our method generalizes to higher dimensions.

The paper deals with Sigma-composition and Sigma-essential composition of terms which lead to stable and s-stable varieties of algebras. A full description of all stable varieties of semigroups, commutative and idempotent groupoids is obtained. We use an abstract reduction system which simplifies the presentations of terms of type tau - (2) to study the variety of idempotent groupoids and s-stable varieties of groupoids. S-stable varieties are a variation of stable varieties, used to highlight replacement of subterms of a term in a deductive system instead of the usual replacement of variables by terms.

Towards the assimilation of tree-ring-width records using ensemble Kalman filtering techniques
(2016)

This paper investigates the applicability of the Vaganov–Shashkin–Lite (VSL) forward model for tree-ring-width chronologies as observation operator within a proxy data assimilation (DA) setting. Based on the principle of limiting factors, VSL combines temperature and moisture time series in a nonlinear fashion to obtain simulated TRW chronologies. When used as observation operator, this modelling approach implies three compounding, challenging features: (1) time averaging, (2) “switching recording” of 2 variables and (3) bounded response windows leading to “thresholded response”. We generate pseudo-TRW observations from a chaotic 2-scale dynamical system, used as a cartoon of the atmosphere-land system, and attempt to assimilate them via ensemble Kalman filtering techniques. Results within our simplified setting reveal that VSL’s nonlinearities may lead to considerable loss of assimilation skill, as compared to the utilization of a time-averaged (TA) linear observation operator. In order to understand this undesired effect, we embed VSL’s formulation into the framework of fuzzy logic (FL) theory, which thereby exposes multiple representations of the principle of limiting factors. DA experiments employing three alternative growth rate functions disclose a strong link between the lack of smoothness of the growth rate function and the loss of optimality in the estimate of the TA state. Accordingly, VSL’s performance as observation operator can be enhanced by resorting to smoother FL representations of the principle of limiting factors. This finding fosters new interpretations of tree-ring-growth limitation processes.

In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor U : SLoc -> S*Alg to the category of super-*-algebras, which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct superquantum field theories in terms of enriched functors eU : eSLoc -> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the enriched framework. As examples we analyze the superparticle in 1 vertical bar 1-dimensions and the free Wess-Zumino model in 3 vertical bar 2-dimensions.

We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images.

constraints
(2016)

Prior information in ill-posed inverse problem is of critical importance because it is conditioning the posterior solution and its associated variability. The problem of determining the flow evolving at the Earth's core-mantle boundary through magnetic field models derived from satellite or observatory data is no exception to the rule. This study aims to estimate what information can be extracted on the velocity field at the core-mantle boundary, when the frozen flux equation is inverted under very weakly informative, but realistic, prior constraints. Instead of imposing a converging spectrum to the flow, we simply assume that its poloidal and toroidal energy spectra are characterized by power laws. The parameters of the spectra, namely, their magnitudes, and slopes are unknown. The connection between the velocity field, its spectra parameters, and the magnetic field model is established through the Bayesian formulation of the problem. Working in two steps, we determined the time-averaged spectra of the flow within the 2001–2009.5 period, as well as the flow itself and its associated uncertainties in 2005.0. According to the spectra we obtained, we can conclude that the large-scale approximation of the velocity field is not an appropriate assumption within the time window we considered. For the flow itself, we show that although it is dominated by its equatorial symmetric component, it is very unlikely to be perfectly symmetric. We also demonstrate that its geostrophic state is questioned in different locations of the outer core.

Being motivated by open questions in gauge field theories, we consider non-standard de Rham cohomology groups for timelike compact and spacelike compact support systems. These cohomology groups are shown to be isomorphic respectively to the usual de Rham cohomology of a spacelike Cauchy surface and its counterpart with compact support. Furthermore, an analog of the usual Poincare duality for de Rham cohomology is shown to hold for the case with non-standard supports as well. We apply these results to find optimal spaces of linear observables for analogs of arbitrary degree k of both the vector potential and the Faraday tensor. The term optimal has to be intended in the following sense: The spaces of linear observables we consider distinguish between different configurations; in addition to that, there are no redundant observables. This last point in particular heavily relies on the analog of Poincare duality for the new cohomology groups. Published by AIP Publishing.

We introduce a technique for the modeling and separation of geomagnetic field components that is based on an analysis of their correlation structures alone. The inversion is based on a Bayesian formulation, which allows the computation of uncertainties. The technique allows the incorporation of complex measurement geometries like observatory data in a simple way. We show how our technique is linked to other well-known inversion techniques. A case study based on observational data is given.

Let (M, g) be a closed Riemannian manifold of dimension n >= 3 and let f is an element of C-infinity (M), such that the operator P-f := Delta g + f is positive. If g is flat near some point p and f vanishes around p, we can define the mass of P1 as the constant term in the expansion of the Green function of P-f at p. In this paper, we establish many results on the mass of such operators. In particular, if f := n-2/n(n-1)s(g), i.e. if P-f is the Yamabe operator, we show the following result: assume that there exists a closed simply connected non-spin manifold M such that the mass is non-negative for every metric g as above on M, then the mass is non-negative for every such metric on every closed manifold of the same dimension as M. (C) 2016 Elsevier Inc. All rights reserved.

Based on theories of scientific discovery learning (SDL) and conceptual change, this study explores students' preconceptions in the domain of torques in physics and the development of these conceptions while learning with a computer-based SDL task. As a framework we used a three-space theory of SDL and focused on model space, which is supposed to contain the current conceptualization/model of the learning domain, and on its change through hypothesis testing and experimenting. Three questions were addressed: (1) What are students' preconceptions of torques before learning about this domain? To do this a multiple-choice test for assessing students' models of torques was developed and given to secondary school students (N = 47) who learned about torques using computer simulations. (2) How do students' models of torques develop during SDL? Working with simulations led to replacement of some misconceptions with physically correct conceptions. (3) Are there differential patterns of model development and if so, how do they relate to students’ use of the simulations? By analyzing individual differences in model development, we found that an intensive use of the simulations was associated with the acquisition of correct conceptions. Thus, the three-space theory provided a useful framework for understanding conceptual change in SDL.

Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation
(2016)

In recent years, the Northern Hemisphere midlatitudes have suffered from severe winters like the extreme 2012/13 winter in the eastern United States. These cold spells were linked to a meandering upper-tropospheric jet stream pattern and a negative Arctic Oscillation index (AO). However, the nature of the drivers behind these circulation patterns remains controversial. Various studies have proposed different mechanisms related to changes in the Arctic, most of them related to a reduction in sea ice concentrations or increasing Eurasian snow cover. Here, a novel type of time series analysis, called causal effect networks (CEN), based on graphical models is introduced to assess causal relationships and their time delays between different processes. The effect of different Arctic actors on winter circulation on weekly to monthly time scales is studied, and robust network patterns are found. Barents and Kara sea ice concentrations are detected to be important external drivers of the midlatitude circulation, influencing winter AO via tropospheric mechanisms and through processes involving the stratosphere. Eurasia snow cover is also detected to have a causal effect on sea level pressure in Asia, but its exact role on AO remains unclear. The CEN approach presented in this study overcomes some difficulties in interpreting correlation analyses, complements model experiments for testing hypotheses involving teleconnections, and can be used to assess their validity. The findings confirm that sea ice concentrations in autumn in the Barents and Kara Seas are an important driver of winter circulation in the midlatitudes.

We construct new concrete examples of relative differential characters, which we call Cheeger-Chern-Simons characters. They combine the well-known Cheeger-Simons characters with Chern-Simons forms. In the same way as Cheeger-Simons characters generalize Chern-Simons invariants of oriented closed manifolds, Cheeger-Chern-Simons characters generalize Chern-Simons invariants of oriented manifolds with boundary. We study the differential cohomology of compact Lie groups G and their classifying spaces BG. We show that the even degree differential cohomology of BG canonically splits into Cheeger-Simons characters and topologically trivial characters. We discuss the transgression in principal G-bundles and in the universal bundle. We introduce two methods to lift the universal transgression to a differential cohomology valued map. They generalize the Dijkgraaf-Witten correspondence between 3-dimensional Chern-Simons theories and Wess-Zumino-Witten terms to fully extended higher-order Chern-Simons theories. Using these lifts, we also prove two versions of a differential Hopf theorem. Using Cheeger-Chern-Simons characters and transgression, we introduce the notion of differential trivializations of universal characteristic classes. It generalizes well-established notions of differential String classes to arbitrary degree. Specializing to the class , we recover isomorphism classes of geometric string structures on Spin (n) -bundles with connection and the corresponding spin structures on the free loop space. The Cheeger-Chern-Simons character associated with the class together with its transgressions to loop space and higher mapping spaces defines a Chern-Simons theory, extended down to points. Differential String classes provide trivializations of this extended Chern-Simons theory. This setting immediately generalizes to arbitrary degree: for any universal characteristic class of principal G-bundles, we have an associated Cheeger-Chern-Simons character and extended Chern-Simons theory. Differential trivialization classes yield trivializations of this extended Chern-Simons theory.

A manifold M with smooth edge Y is locally near Y modelled on X-Delta x Omega for a cone X-Delta := ( (R) over bar (+) x X)/({0} x X) where Xis a smooth manifold and Omega subset of R-q an open set corresponding to a chart on Y. Compared with pseudo-differential algebras, based on other quantizations of edge-degenerate symbols, we extend the approach with Mellin representations on the r half-axis up to r = infinity, the conical exit of X-boolean AND = R+ x X (sic) (r, x) at infinity. The alternative description of the edge calculus is useful for pseudo-differential structures on manifolds with higher singularities.

The three-space theory of problem solving predicts that the quality of a learner's model and the goal specificity of a task interact on knowledge acquisition. In Experiment 1 participants used a computer simulation of a lever system to learn about torques. They either had to test hypotheses (nonspecific goal), or to produce given values for variables (specific goal). In the good- but not in the poor-model condition they saw torque depicted as an area. Results revealed the predicted interaction. A nonspecific goal only resulted in better learning when a good model of torques was provided. In Experiment 2 participants learned to manipulate the inputs of a system to control its outputs. A nonspecific goal to explore the system helped performance when compared to a specific goal to reach certain values when participants were given a good model, but not when given a poor model that suggested the wrong hypothesis space. Our findings support the three-space theory. They emphasize the importance of understanding for problem solving and stress the need to study underlying processes.