### Refine

#### Document Type

- Preprint (3)
- Article (2)
- Doctoral Thesis (1)

#### Keywords

- Beltrami equation (2)
- Quasiconformal mapping (1)
- Quasilinear equations (1)
- asymptotic expansion (1)
- p-Laplace Operator (1)
- quasiconformal mapping (1)
- removable sets (1)
- singular point (1)
- the Dirichlet problem (1)

#### Institute

Let A be a nonlinear differential operator on an open set X in R^n and S a closed subset of X. Given a class F of functions in X, the set S is said to be removable for F relative to A if any weak solution of A (u) = 0 in the complement of S of class F satisfies this equation weakly in all of X. For the most extensively studied classes F we show conditions on S which guarantee that S is removable for F relative to A.

We discuss the relaxation of a class of nonlinear elliptic Cauchy problems with data on a piece S of the boundary surface by means of a variational approach known in the optimal control literature as "equation error method". By the Cauchy problem is meant any boundary value problem for an unknown function y in a domain X with the property that the data on S, if combined with the differential equations in X, allow one to determine all derivatives of y on S by means of functional equations. In the case of real analytic data of the Cauchy problem, the existence of a local solution near S is guaranteed by the Cauchy-Kovalevskaya theorem. We also admit overdetermined elliptic systems, in which case the set of those Cauchy data on S for which the Cauchy problem is solvable is very "thin". For this reason we discuss a variational setting of the Cauchy problem which always possesses a generalised solution.