### Refine

#### Year of publication

#### Document Type

- Article (257)
- Preprint (9)
- Monograph/Edited Volume (8)
- Postprint (8)

#### Keywords

- Complex networks (2)
- models (2)
- 3D medical image analysis (1)
- African climate (1)
- Algebraic geometry (1)
- Bifurcation parameters (1)
- Biomass (1)
- Calvin cycle (1)
- Chaotic System (1)
- Cold air surges (1)

#### Institute

- Institut für Physik und Astronomie (216)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (48)
- Institut für Psychologie (15)
- Institut für Erd- und Umweltwissenschaften (6)
- Institut für Biochemie und Biologie (4)
- Extern (3)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (3)
- Department Psychologie (2)
- Institut für Geowissenschaften (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)

The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-samples test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series.

A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields.

A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields

We present different tests for phase synchronization which improve the procedures currently used in the literature. This is accomplished by using a two-sample test setup and by utilizing insights and methods from directional statistics and bootstrap theory. The tests differ in the generality of the situation in which they can be applied as well as in their complexity, including computational cost. A modification of the resampling technique of the bootstrap is introduced, making it possible to fully utilize data from time series

We propose a new autonomous dynamical system of dimension N=4 that demonstrates the regime of stable two- frequency motions and period-doubling bifurcations of a two-dimensional torus. It is shown that the period-doubling bifurcation of the two-dimensional torus is not followed by the resonance phenomenon, and the two-dimensional ergodic torus undergoes a period-doubling bifurcation. The interaction of two generators is also analyzed. The phenomenon of external and mutual synchronization of two-frequency oscillations is observed, for which winding number locking on a two- dimensional torus takes place

We study numerically the behavior of the autocorrelation function (ACF) and the power spectrum of spiral attractors without and in the presence of noise. It is shown that the ACF decays exponentially and has two different time scales. The rate of the ACF decrease is defined by the amplitude fluctuations on small time intervals, i.e., when tau < tau(cor), and by the effective diffusion coefficient of the instantantaneous phase on large time intervals. it is also demonstrated that the ACF in the Poincare map also decreases according to the exponential law exp(-lambda(+)k), where lambda(+) is the positive Lyapunov exponent. The obtained results are compared with the theory of fluctuations for the Van der Pol oscillator

We present results of physical experiments where we measure the autocorrelation function (ACF) and the spectral linewidth of the basic frequency of a spiral chaotic attractor in a generator with inertial nonlinearity both without and in the presence of external noise. It is shown that the ACF of spiral attractors decays according to an exponential law with a decrement which is defined by the phase diffusion coefficient. It is also established that the evolution of the instantaneous phase can be approximated by a Wiener random process