### Refine

#### Language

- English (28) (remove)

#### Keywords

#### Institute

- Institut für Erd- und Umweltwissenschaften (28) (remove)

Modern natural hazards research requires dealing with several uncertainties that arise from limited process knowledge, measurement errors, censored and incomplete observations, and the intrinsic randomness of the governing processes. Nevertheless, deterministic analyses are still widely used in quantitative hazard assessments despite the pitfall of misestimating the hazard and any ensuing risks.
In this paper we show that Bayesian networks offer a flexible framework for capturing and expressing a broad range of uncertainties encountered in natural hazard assessments. Although Bayesian networks are well studied in theory, their application to real-world data is far from straightforward, and requires specific tailoring and adaptation of existing algorithms. We offer suggestions as how to tackle frequently arising problems in this context and mainly concentrate on the handling of continuous variables, incomplete data sets, and the interaction of both. By way of three case studies from earthquake, flood, and landslide research, we demonstrate the method of data-driven Bayesian network learning, and showcase the flexibility, applicability, and benefits of this approach.
Our results offer fresh and partly counterintuitive insights into well-studied multivariate problems of earthquake-induced ground motion prediction, accurate flood damage quantification, and spatially explicit landslide prediction at the regional scale. In particular, we highlight how Bayesian networks help to express information flow and independence assumptions between candidate predictors. Such knowledge is pivotal in providing scientists and decision makers with well-informed strategies for selecting adequate predictor variables for quantitative natural hazard assessments.

We investigate the usefulness of complex flood damage models for predicting relative damage to residential buildings in a spatial and temporal transfer context. We apply eight different flood damage models to predict relative building damage for five historic flood events in two different regions of Germany. Model complexity is measured in terms of the number of explanatory variables which varies from 1 variable up to 10 variables which are singled out from 28 candidate variables. Model validation is based on empirical damage data, whereas observation uncertainty is taken into consideration. The comparison of model predictive performance shows that additional explanatory variables besides the water depth improve the predictive capability in a spatial and temporal transfer context, i.e., when the models are transferred to different regions and different flood events. Concerning the trade-off between predictive capability and reliability the model structure seem more important than the number of explanatory variables. Among the models considered, the reliability of Bayesian network-based predictions in space-time transfer is larger than for the remaining models, and the uncertainties associated with damage predictions are reflected more completely.

Logic trees have become the most popular tool for the quantification of epistemic uncertainties in probabilistic seismic hazard assessment (PSHA). In a logic-tree framework, epistemic uncertainty is expressed in a set of branch weights, by which an expert or an expert group assigns degree-of-belief values to the applicability of the corresponding branch models. Despite the popularity of logic-trees, however, one finds surprisingly few clear commitments to what logic-tree branch weights are assumed to be (even by hazard analysts designing logic trees). In the present paper we argue that it is important for hazard analysts to accept the probabilistic framework from the beginning for assigning logic-tree branch weights. In other words, to accept that logic-tree branch weights are probabilities in the axiomatic sense, independent of one's preference for the philosophical interpretation of probabilities. We demonstrate that interpreting logic-tree branch weights merely as a numerical measure of "model quality," which are then subsequently normalized to sum up to unity, will with increasing number of models inevitably lead to an apparent insensitivity of hazard curves on the logic-tree branch weights, which may even be mistaken for robustness of the results. Finally, we argue that assigning logic-tree branch weights in a sequential fashion may improve their logical consistency.

Although the methodological framework of probabilistic seismic hazard analysis is well established, the selection of models to predict the ground motion at the sites of interest remains a major challenge. Information theory provides a powerful theoretical framework that can guide this selection process in a consistent way. From an information- theoretic perspective, the appropriateness of models can be expressed in terms of their relative information loss (Kullback-Leibler distance) and hence in physically meaningful units (bits). In contrast to hypothesis testing, information-theoretic model selection does not require ad hoc decisions regarding significance levels nor does it require the models to be mutually exclusive and collectively exhaustive. The key ingredient, the Kullback-Leibler distance, can be estimated from the statistical expectation of log-likelihoods of observations for the models under consideration. In the present study, data-driven ground-motion model selection based on Kullback-Leibler-distance differences is illustrated for a set of simulated observations of response spectra and macroseismic intensities. Information theory allows for a unified treatment of both quantities. The application of Kullback-Leibler-distance based model selection to real data using the model generating data set for the Abrahamson and Silva (1997) ground-motion model demonstrates the superior performance of the information-theoretic perspective in comparison to earlier attempts at data- driven model selection (e.g., Scherbaum et al., 2004).

Aleatory variability in ground-motion prediction, represented by the standard deviation (sigma) of a ground-motion prediction equation, exerts a very strong influence on the results of probabilistic seismic-hazard analysis (PSHA). This is especially so at the low annual exceedance frequencies considered for nuclear facilities; in these cases, even small reductions in sigma can have a marked effect on the hazard estimates. Proper separation and quantification of aleatory variability and epistemic uncertainty can lead to defensible reductions in sigma. One such approach is the single-station sigma concept, which removes that part of sigma corresponding to repeatable site-specific effects. However, the site-to-site component must then be constrained by site-specific measurements or else modeled as epistemic uncertainty and incorporated into the modeling of site effects. The practical application of the single-station sigma concept, including the characterization of the dynamic properties of the site and the incorporation of site-response effects into the hazard calculations, is illustrated for a PSHA conducted at a rock site under consideration for the potential construction of a nuclear power plant.

Probabilistic seismic-hazard analysis (PSHA) is the current tool of the trade used to estimate the future seismic demands at a site of interest. A modern PSHA represents a complex framework that combines different models with numerous inputs. It is important to understand and assess the impact of these inputs on the model output in a quantitative way. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters, and obtaining insight about the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs; however, obtaining the derivatives of complex models can be challenging.
In this study, we show how differential sensitivity analysis of a complex framework such as PSHA can be carried out using algorithmic/automatic differentiation (AD). AD has already been successfully applied for sensitivity analyses in various domains such as oceanography and aerodynamics. First, we demonstrate the feasibility of the AD methodology by comparing AD-derived sensitivities with analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. Second, we derive sensitivities via AD for a more complex PSHA study using a stochastic simulation approach for the prediction of ground motions. The presented approach is general enough to accommodate more advanced PSHA studies of greater complexity.

Response spectra are of fundamental importance in earthquake engineering and represent a standard measure in seismic design for the assessment of structural performance. However, unlike Fourier spectral amplitudes, the relationship of response spectral amplitudes to seismological source, path, and site characteristics is not immediately obvious and might even be considered counterintuitive for high oscillator frequencies. The understanding of this relationship is nevertheless important for seismic-hazard analysis. The purpose of the present study is to comprehensively characterize the variation of response spectral amplitudes due to perturbations of the causative seismological parameters. This is done by calculating the absolute parameter sensitivities (sensitivity coefficients) defined as the partial derivatives of the model output with respect to its input parameters. To derive sensitivities, we apply algorithmic differentiation (AD). This powerful approach is extensively used for sensitivity analysis of complex models in meteorology or aerodynamics. To the best of our knowledge, AD has not been explored yet in the seismic-hazard context. Within the present study, AD was successfully implemented for a proven and extensively applied simulation program for response spectra (Stochastic Method SIMulation [SMSIM]) using the TAPENADE AD tool. We assess the effects and importance of input parameter perturbations on the shape of response spectra for different regional stochastic models in a quantitative way. Additionally, we perform sensitivity analysis regarding adjustment issues of groundmotion prediction equations.

Empirical ground-motion models used in seismic hazard analysis are commonly derived by regression of observed ground motions against a chosen set of predictor variables. Commonly, the model building process is based on residual analysis and/or expert knowledge and/or opinion, while the quality of the model is assessed by the goodness-of-fit to the data. Such an approach, however, bears no immediate relation to the predictive power of the model and with increasing complexity of the models is increasingly susceptible to the danger of overfitting. Here, a different, primarily data-driven method for the development of ground-motion models is proposed that makes use of the notion of generalization error to counteract the problem of overfitting. Generalization error directly estimates the average prediction error on data not used for the model generation and, thus, is a good criterion to assess the predictive capabilities of a model. The approach taken here makes only few a priori assumptions. At first, peak ground acceleration and response spectrum values are modeled by flexible, nonphysical functions (polynomials) of the predictor variables. The inclusion of a particular predictor and the order of the polynomials are based on minimizing generalization error. The approach is illustrated for the next generation of ground-motion attenuation dataset. The resulting model is rather complex, comprising 48 parameters, but has considerably lower generalization error than functional forms commonly used in ground-motion models. The model parameters have no physical meaning, but a visual interpretation is possible and can reveal relevant characteristics of the data, for example, the Moho bounce in the distance scaling. In a second step, the regression model is approximated by an equivalent stochastic model, making it physically interpretable. The resulting resolvable stochastic model parameters are comparable to published models for western North America. In general, for large datasets generalization error minimization provides a viable method for the development of empirical ground-motion models.

A Bayesian ground-motion model is presented that directly estimates the coefficients of the model and the correlation between different ground-motion parameters of interest. The model is developed as a multi-level model with levels for earthquake, station and record terms. This separation allows to estimate residuals for each level and thus the estimation of the associated aleatory variability. In particular, the usually estimated within-event variability is split into a between-station and between-record variability. In addition, the covariance structure between different ground-motion parameters of interest is estimated for each level, i.e. directly the between-event, between-station and between-record correlation coefficients are available. All parameters of the model are estimated via Bayesian inference, which allows to assess their epistemic uncertainty in a principled way. The model is developed using a recently compiled European strong-motion database. The target variables are peak ground velocity, peak ground acceleration and spectral acceleration at eight oscillator periods. The model performs well with respect to its residuals, and is similar to other ground-motion models using the same underlying database. The correlation coefficients are similar to those estimated for other parts of the world, with nearby periods having a high correlation. The between-station, between-event and between-record correlations follow generally a similar trend.

The Ceres earthquake of 29 September 1969 is the largest known earthquake in southern Africa. Digitized analog recordings from Worldwide Standardized Seismographic Network stations (Powell and Fries, 1964) are used to retrieve the point source moment tensor and the most likely centroid depth of the event using full waveform modeling. A scalar seismic moment of 2.2-2.4 x 10(18) N center dot m corresponding to a moment magnitude of 6.2-6.3 is found. The analysis confirms the pure strike-slip mechanism previously determined from onset polarities by Green and Bloch (1971). Overall good agreement with the fault orientation previously estimated from local aftershock recordings is found. The centroid depth can be constrained to be less than 15 km. In a second analysis step, we use a higher order moment tensor based inversion scheme for simple extended rupture models to constrain the lateral fault dimensions. We find rupture propagated unilaterally for 4.7 s from east-southwest to west-northwest for about 17 km ( average rupture velocity of about 3: 1 km/s).