Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp(2)/sp(3) hybrid species with CQC double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.

Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.

X-ray photoelectron spectroscopy (XPS) is a powerful tool for probing the local chemical environment of atoms near surfaces. When applied to soft matter, such as polymers, XPS spectra are frequently shifted and broadened due to thermal atom motion and by interchain interactions. We present a combined quantum mechanical QM/molecular dynamics (MD) simulation of X-ray photoelectron spectra of polyvinyl alcohol (PVA) using oligomer models in order to account for and quantify these effects on the XPS (C1s) signal. In our study, molecular dynamics at finite temperature were performed with a classical forcefield and by ab initio MD (AIMD) using the Car-Parrinello method. Snapshots along, the trajectories represent possible conformers and/or neighbouring environments, with different C1s ionization potentials for individual C atoms leading to broadened XPS peaks. The latter are determined by Delta-Kohn Sham calculations. We also examine the experimental practice of gauging XPS (C1s) signals of alkylic C-atoms in C-containing polymers to the C1s signal of polyethylene.
We find that (i) the experimental XPS (C1s) spectra of PVA (position and width) can be roughly represented by single-strand models, (ii) interchain interactions lead to red-shifts of the XPS peaks by about 0.6 eV, and (iii) AIMD simulations match the findings from classical MD semi-quantitatively. Further, (iv) the gauging procedure of XPS (C1s) signals to the values of PE, introduces errors of about 0.5 eV. (C) 2014 Elsevier B.V. All rights reserved.

The Photoinduced E -> Z Isomerization of Bisazobenzenes: A Surface Hopping Molecular Dynamics Study
(2015)

The photoinduced E -> Z isomerization of azobenzene is a prototypical example of molecular switching. On the way toward rigid molecular rods such as those for opto-mechanical applications, multiazobenzene structures have been suggested in which several switching units are linked together within the same molecule (Bleger et al., J. Phys. Chem. B 2011, 115, 9930-9940). Large differences in the switching efficiency of multiazobenzenes have been observed, depending on whether the switching units are electronically decoupled or not. In this paper we study, on a time-resolved molecular level, the E -> Z isomerization of the simplest multiazobenzene, bisazobenzene (BAB). Two isomers (ortho- and para-BAB), differing only in the connectivity of two azo groups on a shared phenyl ring will be considered.To do so, nonadiabatic semiclassical dynamics after photo-excitation of the isomers are studied by employing an "on-the-fly", fewest switches surface hopping approach. States and couplings are calculated by Configuration Interaction (CI) based on a semiempirical (AM1) Hamiltonian (Persico and co-workers, Chem. Eur. J. 2004, 10, 2327-2341). In the case of para-BAB, computed quantum yields for photoswitching are drastically reduced compared to pristine azobenzene, due to electronic coupling of both switching units. A reason for this (apart from altered absorption spectra and reduced photochromicity) is the drastically reduced lifetimes of electronically excited states which are transiently populated. In contrast for meta-connected species, electronic subsystems are largely decoupled, and computed quantum yields are slightly higher than that for pristine azobenzene because of new isomerization channels. In this case we can also distinguish between single- and double-switch events and we find a cooperative effect: The isomerization of a single azo group is facilitated if the other azo group is already in the Z-configuration.

System-bath problems in physics and chemistry are often described by Markovian master equations. However, the Markov approximation, i.e., neglect of bath memory effects is not always justified, and different measures of non-Markovianity have been suggested in the literature to judge the validity of this approximation. Here we calculate several computable measures of non-Markovianity for the non-trivial problem of a harmonic oscillator coupled to a large number of bath oscillators. The Multi Configurational Time Dependent Hart ree nietliod is used to provide a numerically converged solution of the system-bath Schrodinger equation, from which the appropriate quantities can be calculated. In particular, we consider measures based on trace-distances and quantum discord for a variety of initial states. These quantities have proven useful in the case of two-level and other small model systems Tpically encountered in quantum optics; but are less straightforward to interpret for the more complex model systems that are relevant for chemical physics.

Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the "curse of dimensionality" encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0(+)) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given. (C) 2015 AIP Publishing LLC.

A multi-reference study of the byproduct formation for a ring-closed dithienylethene photoswitch
(2015)

Photodriven molecular switches are sometimes hindered in their performance by forming byproducts which act as dead ends in sequences of switching cycles, leading to rapid fatigue effects. Understanding the reaction pathways to unwanted byproducts is a prerequisite for preventing them. This article presents a study of the photochemical reaction pathways for byproduct formation in the photochromic switch 1,2-bis-(3-thienyl)-ethene. Specifically, using single-and multi-reference methods the post-deexcitation reaction towards the byproduct in the electronic ground state S-0 when starting from the S-1-S-0 conical intersection (CoIn), is considered in detail. We find an unusual low-energy pathway, which offers the possibility for the formation of a dyotropic byproduct. Several high-energy pathways can be excluded with high probability.

A multi-reference study of the byproduct formation for a ring-closed dithienylethene photoswitch
(2015)

Photodriven molecular switches are sometimes hindered in their performance by forming byproducts which act as dead ends in sequences of switching cycles, leading to rapid fatigue effects. Understanding the reaction pathways to unwanted byproducts is a prerequisite for preventing them. This article presents a study of the photochemical reaction pathways for byproduct formation in the photochromic switch 1,2-bis-(3-thienyl)-ethene. Specifically, using single- and multi-reference methods the post-deexcitation reaction towards the byproduct in the electronic ground state S0 when starting from the S1–S0 conical intersection (CoIn), is considered in detail. We find an unusual low-energy pathway, which offers the possibility for the formation of a dyotropic byproduct. Several high-energy pathways can be excluded with high probability.