### Refine

#### Has Fulltext

- no (3) (remove)

#### Year of publication

- 2012 (3) (remove)

#### Keywords

- diffusion (3) (remove)

We consider the mean first-passage time of a random walker moving in a potential landscape on a finite interval, the starting and end points being at different potentials. From analytical calculations and Monte Carlo simulations we demonstrate that the mean first-passage time for a piecewise linear curve between these two points is minimized by the introduction of a potential barrier. Due to thermal fluctuations, this barrier may be crossed. It turns out that the corresponding expense for this activation is less severe than the gain from an increased slope towards the end point. In particular, the resulting mean first-passage time is shorter than for a linear potential drop between the two points.

We study transient work fluctuation relations (FRs) for Gaussian stochastic systems generating anomalous diffusion. For this purpose we use a Langevin approach by employing two different types of additive noise: (i) internal noise where the fluctuation dissipation relation of the second kind (FDR II) holds, and (ii) external noise without FDR II. For internal noise we demonstrate that the existence of FDR II implies the existence of the fluctuation dissipation relation of the first kind (FDR I), which in turn leads to conventional (normal) forms of transient work FRs. For systems driven by external noise we obtain violations of normal FRs, which we call anomalous FRs. We derive them in the long-time limit and demonstrate the existence of logarithmic factors in FRs for intermediate times. We also outline possible experimental verifications.

In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations.