### Refine

#### Year of publication

#### Document Type

- Preprint (567) (remove)

#### Language

- English (530)
- German (34)
- Multiple languages (2)
- French (1)

#### Keywords

- index (11)
- boundary value problems (9)
- elliptic operators (9)
- Fredholm property (8)
- K-theory (7)
- manifolds with singularities (6)
- pseudodifferential operators (6)
- relative index (6)
- Atiyah-Patodi-Singer theory (5)
- index theory (5)

#### Institute

- Institut für Mathematik (378)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (52)
- Institut für Physik und Astronomie (44)
- Institut für Biochemie und Biologie (20)
- Institut für Psychologie (20)
- Institut für Anglistik und Amerikanistik (19)
- Institut für Erd- und Umweltwissenschaften (11)
- Institut für Chemie (8)
- Extern (7)
- Institut für Sportmedizin und Prävention (7)

We have studied bifurcation phenomena for the incompressable Navier-Stokes equations in two space dimensions with periodic boundary conditions. Fourier representations of velocity and pressure have been used to transform the original partial differential equations into systems of ordinary differential equations (ODE), to which then numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. Invariant sets, notably steady states, have been traced for varying Reynolds number or strength of the imposed forcing, respectively. A complete bifurcation sequence leading to chaos is described in detail, including the calculation of the Lyapunov exponents that characterize the resulting chaotic branch in the bifurcation diagram.

Strange nonchaotic attractors typically appear in quasiperiodically driven nonlinear systems. Two methods of their characterization are proposed. The first one is based on the bifurcation analysis of the systems, resulting from periodic approximations of the quasiperiodic forcing. Secondly, we propose th characterize their strangeness by calculating a phase sensitivity exponent, that measures the sensitivity with respect to changes of the phase of the external force. It is shown, that phase sensitivity appears if there is a non-zero probability for positive local Lyapunov exponents to occur.

Aus dem Inhalt: 1. Einführung 2. Motivation für die nichtlineare Dynamik 3. Logistische Abbildung (Parabel-Abbildung) 4. Lorenz-Gleichungen 5. Fraktale Selbstähnlichkeit 6. Die Brownsche Bewegung 7. Stöße & Billards 8. Körper mit gravitativer Wechselwirkung 9. Glossar 10. Turbo-Pascal-Texte 11. IDL-Texte 12. Reduce-Texte

In the modern industrialized countries every year several hundred thousands of people die due to the sudden cardiac death. The individual risk for this sudden cardiac death cannot be defined precisely by common available, non-invasive diagnostic tools like Holter-monitoring, highly amplified ECG and traditional linear analysis of heart rate variability (HRV). Therefore, we apply some rather unconventional methods of nonlinear dynamics to analyse the HRV. Especially, some complexity measures that are basing on symbolic dynamics as well as a new measure, the renormalized entropy, detect some abnormalities in the HRV of several patients who have been classified in the low risk group by traditional methods. A combination of these complexity measures with the parameters in the frequency domain seems to be a promising way to get a more precise definition of the individual risk. These findings have to be validated by a representative number of patients.

We have used techniques of nonlinear dynamics to compare a special model for the reversals of the Earth's magnetic field with the observational data. Although this model is rather simple, there is no essential difference to the data by means of well-known characteristics, such as correlation function and probability distribution. Applying methods of symbolic dynamics we have found that the considered model is not able to describe the dynamical properties of the observed process. These significant differences are expressed by algorithmic complexity and Renyi information.

Two deterministic processes leading to roughening interfaces are considered. It is shown that the dynamics of linear perturbations of turbulent regimes in coupled map lattices is governed by a discrete version of the Kardar-Parisi-Zhang equation. The asymptotic scaling behavior of the perturbation field is investigated in the case of large lattices. Secondly, the dynamics of an order-disorder interface is modelled with a simple two-dimensional coupled map lattice, possesing a turbulent and a laminar state. It is demonstrated, that in some range of parameters the spreading of the turbulent state is accompanied by kinetic roughening of the interface.

We report on bifurcation studies for the incompressible magnetohydrodynamic equations in three space dimensions with periodic boundary conditions and a temporally constant external forcing. Fourier reprsentations of velocity, pressure and magnetic field have been used to transform the original partial differential equations into systems of ordinary differential equations (ODE), to which then special numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. In a part of the calculations, in order to reduce the number of modes to be retained, the concept of approximate inertial manifolds has been applied. For varying (incereasing from zero) strength of the imposed forcing, or varying Reynolds number, respectively, time-asymptotic states, notably stable stationary solutions, have been traced. A primary non-magnetic steady state loses, in a Hopf bifurcation, stability to a periodic state with a non-vanishing magnetic field, showing the appearance of a generic dynamo effect. From now on the magnetic field is present for all values of the forcing. The Hopf bifurcation is followed by furhter, symmetry-breaking, bifurcations, leading finally to chaos. We pay particular attention to kinetic and magnetic helicities. The dynamo effect is observed only if the forcing is chosen such that a mean kinetic helicity is generated; otherwise the magnetic field diffuses away, and the time-asymptotic states are non-magnetic, in accordance with traditional kinematic dynamo theory.

The present paper is related to the problem of approximating the exact solution to the magnetohydrodynamic equations (MHD). The behaviour of a viscous, incompressible and resistive fluid is exemined for a long period of time. Contents: 1 The magnetohydrodynamic equations 2 Notations and precise functional setting of the problem 3 Existence, uniqueness and regularity results 4 Statement and Proof of the main theorem 5 The approximate inertial manifold 6 Summary

The bifurcation behaviour of the 3D magnetohydrodynamic equations has been studied for external forcings of varying degree of helicity. With increasing strength of the forcing a primary non-magnetic steady state loses stability to a magnetic periodic state if the helicity exceeds a threshold value and to different non-magnetic states otherwise.

Projection methods based on wavelet functions combine optimal convergence rates with algorithmic efficiency. The proofs in this paper utilize the approximation properties of wavelets and results from the general theory of regularization methods. Moreover, adaptive strategies can be incorporated still leading to optimal convergence rates for the resulting algorithms. The so-called wavelet-vaguelette decompositions enable the realization of especially fast algorithms for certain operators.