### Refine

#### Year of publication

#### Document Type

- Article (32) (remove)

#### Keywords

- electromagnetic radiation (1)
- general relativity (1)
- gravity (1)
- laser pulses (1)
- linearized gravity (1)
- pp-wave solutions (1)

We propose an optical scheme for the simultaneous measurement of the position and momentum of a single atom. The scheme involves the coupling of the atom of two light fields with different spatical and polarization characteristics. The proposed technique is closely related to the Arthurs-Kelly measurement scheme; the principal difference is that in the present case the electromagnetic fields rather than from shifts in the position of a pointer.

We study the scattering of quantum particles in the presence of an Aharonov-Bohm vortex and in an arbitrary cylindrically symmetric potential. In particular we address the scattering of atoms carrying dipole moments induced by an electrically charged wire and a homogeneous magnetic field. We argue that, despite the strong attraction of the wire, an Aharoniv-Bohm effect will be visible.

We present projects for future space missions using new quantum devices based on ultracold atoms. They will enable fundamental physics experiments testing quantum physics, physics beyond the standard model of fundamental particles and interactions, special relativity, gravitation and general relativity.

The atom laser (or `Boser') is a device that delivers a beam of atomic de Broglie waves with high coherence and monochromaticity. In this review, we concentrate on an all-optical scheme of an atom laser that is based on optical pumping. The model is first presented in terms of kinetic equations, and its relation to the ordinary laser and the Bose-Einstein condensation is discussed. We then derive a master equation for the quantum statistics dynamics of the atom laser. Neglecting photon reabsorption processes, the master equation is solved and the counting statistics is computed. Finally, the effects of the inelastic reabsorption processes are investigated for the particular case of two atoms. It is shown that the onset of atom-lasing is suppressed in large resonators, but may be achieved in small and/or low-dimensional resonators.

We investigate the notion of Bose-Einstein condensation of interacting particles. The definition of the condensate is based on the existence of the dominant eigenvalue of the single-particle density matrix. The statistical properies and the characteristics temperature are computed exactly in the soluble models of two interacting atoms.

We consider entanglement-assisted remote quantum state manipulation of bipartite mixed states. Several aspects are addressed: we present a class of mixed states of rank two that can be transformed into another class of mixed states under entanglement-assisted local operations with classical communication, but for which such a transformation is impossible without assistance. Furthermore, we demonstrate enhancement of the efficiency of purification protocols with the help of entanglement-assisted operations. Finally, transformations from one mixed state to mixed target states which are sufficiently close to the source state are contrasted with similar transformations in the pure-state case.

We establish a quantitative connection between the amount of lost classical information about a quantum state and the concomitant loss of entanglement. Using menthods that have been developed for the optimal purification of miced states, we find a class of miced states with known distillable entanglement. These results can be used to determine the quantum capacity of a quantum channel which randomizes the order of transmitted signals.

We consider the role of weak interaction on the fluctuations of the number of condensed atoms within canonical and microanonical ensembles. Unlike the correspinding case of the ideal gas this is not a clean, well-defined problem of mathematical physics. Two related reasons are the following: there is no unique way of defining the condensate fraction of the interacting system and no exact energy levels of the interacting system are known.

The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles
at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.