### Refine

#### Keywords

We introduce the notion of coupling distances on the space of Levy measures in order to quantify rates of convergence towards a limiting Levy jump diffusion in terms of its characteristic triplet, in particular in terms of the tail of the Levy measure. The main result yields an estimate of the Wasserstein-Kantorovich-Rubinstein distance on path space between two Levy diffusions in terms of the coupling distances. We want to apply this to obtain precise rates of convergence for Markov chain approximations and a statistical goodness-of-fit test for low-dimensional conceptual climate models with paleoclimatic data.

We introduce the notion of coupling distances on the space of Lévy measures in order to quantify rates of convergence towards a limiting Lévy jump diffusion in terms of its characteristic triplet, in particular in terms of the tail of the Lévy measure. The main result yields an estimate of the Wasserstein-Kantorovich-Rubinstein distance on path space between two Lévy diffusions in terms of the couping distances. We want to apply this to obtain precise rates of convergence for Markov chain approximations and a statistical goodness-of-fit test for low-dimensional conceptual climate models with paleoclimatic data.

This article aims at the statistical assessment of time series with large fluctuations in short time, which are assumed to stem from a continuous process perturbed by a Lévy process exhibiting a heavy tail behavior. We propose an easily implementable procedure to estimate efficiently the statistical difference between the noisy behavior of the data and a given reference jump measure in terms of so-called coupling distances. After a short introduction to Lévy processes and coupling distances we recall basic statistical approximation results and derive rates of convergence. In the sequel the procedure is elaborated in detail in an abstract setting and eventually applied in a case study to simulated and paleoclimate data. It indicates the dominant presence of a non-stable heavy-tailed jump Lévy component for some tail index greater than 2.

This article assesses the distance between the laws of stochastic differential equations with multiplicative Lévy noise on path space in terms of their characteristics. The notion of transportation distance on the set of Lévy kernels introduced by Kosenkova and Kulik yields a natural and statistically tractable upper bound on the noise sensitivity. This extends recent results for the additive case in terms of coupling distances to the multiplicative case. The strength of this notion is shown in a statistical implementation for simulations and the example of a benchmark time series in paleoclimate.