Refine
Year of publication
Document Type
- Article (36309)
- Doctoral Thesis (6543)
- Monograph/Edited Volume (5582)
- Postprint (3296)
- Review (2315)
- Part of a Book (1111)
- Other (982)
- Conference Proceeding (584)
- Preprint (569)
- Part of Periodical (531)
Language
- English (31341)
- German (26243)
- Spanish (365)
- French (330)
- Italian (115)
- Russian (115)
- Multiple languages (70)
- Hebrew (36)
- Portuguese (25)
- Polish (24)
Keywords
- Germany (209)
- climate change (182)
- Deutschland (146)
- machine learning (91)
- diffusion (80)
- European Union (79)
- Sprachtherapie (77)
- Migration (75)
- morphology (74)
- Logopädie (73)
Institute
- Institut für Biochemie und Biologie (5547)
- Institut für Physik und Astronomie (5509)
- Institut für Geowissenschaften (3718)
- Institut für Chemie (3501)
- Wirtschaftswissenschaften (2647)
- Historisches Institut (2536)
- Department Psychologie (2363)
- Institut für Mathematik (2166)
- Institut für Romanistik (2116)
- Sozialwissenschaften (1885)
Aleksandr Veprik (1899–1958)
(2024)
The years 1953 through the 1970s in the Soviet Union have been called the era of the “Jews of silence.” And yet through various types of musical activities, certain parts of the Jewish population in the USSR were able to maintain a collective cultural identity in the public sphere. Captured as a musical community, this collectivity also extended to non-Jewish composers, musicians, and audiences. As such it thematicized, performed, represented, and received Jewishness, through Yiddish theater and songs, art music, and popular music. Concerts and works conceived for the Soviet stages demonstrate that Jewishness mattered, with music taking on new symbolism and becoming imbued with new meaning. This chapter focuses on the presence (and absence) of Jewish music in the public sphere, specifically in the concert hall and other stages in the post-Stalinist Soviet Union.
We investigate the failed partial eruption of a filament system in NOAA AR 12104 on 2014 July 5, using multiwavelength EUV, magnetogram, and H alpha observations, as well as magnetic field modeling. The filament system consists of two almost co-spatial segments with different end points, both resembling a C shape. Following an ejection and a precursor flare related to flux cancellation, only the upper segment rises and then displays a prominent twisted structure, while rolling over toward its footpoints. The lower segment remains undisturbed, indicating that the system possesses a double-decker structure. The erupted segment ends up with a reverse-C shape, with material draining toward its footpoints, while losing its twist. Using the flux rope insertion method, we construct a model of the source region that qualitatively reproduces key elements of the observed evolution. At the eruption onset, the model consists of a flux rope atop a flux bundle with negligible twist, which is consistent with the observational interpretation that the filament possesses a double-decker structure. The flux rope reaches the critical height of the torus instability during its initial relaxation, while the lower flux bundle remains in stable equilibrium. The eruption terminates when the flux rope reaches a dome-shaped quasi-separatrix layer that is reminiscent of a magnetic fan surface, although no magnetic null is found. The flux rope is destroyed by reconnection with the confining overlying flux above the dome, transferring its twist in the process.
Natural gas can be temporarily stored in a variety of underground facilities, such as depleted gas and oil fields, natural aquifers and caverns in salt rocks. Being extensively monitored during operations, these systems provide a favourable opportunity to investigate how pressure varies in time and space and possibly induces/triggers earthquakes on nearby faults. Elaborate and detailed numerical modelling techniques are often applied to study gas reservoirs. Here we show the possibilities and discuss the limitations of a flexible and easily formulated tool that can be straightforwardly applied to simulate temporal pore-pressure variations and study the relation with recorded microseismic events. We use the software POEL (POroELastic diffusion and deformation) which computes the poroelastic response to fluid injection/extraction in a horizontally layered poroelastic structure. We further develop its application to address the presence of vertical impermeable faults bounding the reservoir and of multiple injection/extraction sources. Exploiting available information on the reservoir geometry and physical parameters, and records of injection/extraction rates for a gas reservoir in southern Europe, we perform an extensive parametric study considering different model configurations. Comparing modelled spatiotemporal pore-pressure variations with in situ measurements, we show that the inclusion of vertical impermeable faults provides an improvement in reproducing the observations and results in pore-pressure accumulation near the faults and in a variation of the temporal pore-pressure diffusion pattern. To study the relation between gas storage activity and recorded local microseismicity, we applied different seismicity models based on the estimated porepressure distribution. This analysis helps to understand the spatial distribution of seismicity and its temporal modulation. The results show that the observed microseismicity could be partly linked to the storage activity, but the contribution of tectonic background seismicity cannot be excluded.
The administrative language used in imperial and city chanceries illustrates formal language use in the Early Modern period, as most evident in its syntactic complexity. Since administrative language was considered prestigious by the literate people of the time, the syntactic features in question are increasingly found in other text types as well (Lötscher 1995, Schwitalla 2002). The present paper investigates early newspapers published in the seventeenth and eighteenth centuries to evalute their degree of syntactic complexity and hence the extent of formal language used. Contrary to common belief (Admoni 1980, von Polenz 2013), it will be shown that early newspapers do not allow a uniform assessment in terms of their syntactic complexity, when they emerge as a new genre in the seventeenth century: some news segments display a fairly simple syntax, whereas others are of high syntactic complexity. By the end of the eighteenth century, the growing conventionalization of the new genre as well as the impact of standardization processes render newspapers much more balanced in terms of syntactic complexity. Unlike previous work on the syntactic complexity of newspaper language, the measurement of syntactic complexity takes into account not only sentence length and the relationship between independent and dependent clauses, but also the placement of adverbial clauses in relation to their associated clause.
Reservoir-triggered seismicity has been observed near dams during construction, impoundment, and cyclic filling in many parts of the earth. In Turkey, the number of dams has increased substantially over the last decade, with Ataturk Dam being the largest dam in Turkey with a total water capacity of 48.7 billion m(3). After the construction of the dam, the monitoring network has improved. Considering earthquakes above the long-term completeness magnitude of M-C = 3.5, the local seismicity rate has substantially increased after the filling of the reservoir. Recently, two damaging earthquakes of M-w 5.5 and M-w 5.1 occurred in the town of Samsat near the Ataturk Reservoir in 2017 and 2018, respectively. In this study, we analyze the spatio-temporal evolution of seismicity and its source properties in relation to the temporal water-level variations and the stresses resulting from surface loading and pore-pressure diffusion. We find that water-level and seismicity rate are anti-correlated, which is explained by the stabilization effect of the gravitational induced stress imposed by water loading on the local faults. On the other hand, we find that the overall effective stress in the seismogenic zone increased over decades due to pore-pressure diffusion, explaining the enhanced background seismicity during recent years. Additionally, we observe a progressive decrease of the Gutenberg-Richter b-value. Our results indicate that the stressing rate finally focused on the region where the two damaging earthquakes occurred in 2017 and 2018.
Synthesis of organic-inorganic hybrids based on the conjugated polymer P3HT and mesoporous silicon
(2022)
Organic-inorganic hybrids are a class of functional materials that combine favorable properties of their constituents to achieve an overall improved performance for a wide range of applications. This article presents the synthesis route for P3HT-porous silicon hybrids for thermoelectric applications. The conjugated polymer P3HT is incorporated into the porous silicon matrix by means of melt infiltration. Gravimetry, sorption isotherms and energy dispersive X-ray spectroscopy (EDX) mapping indicate that the organic molecules occupy more than 50% of the void space in the inorganic host. We demonstrate that subsequent diffusion-based doping of the confined polymer in a FeCl3 solution increases the electrical conductivity of the hybrid by five orders of magnitude compared to the empty porous silicon host.
The accelerating climatic changes and new infrastructure development across the Arctic require more robust risk and environmental assessment, but thus far there is no consistent record of human impact. We provide a first panarctic satellite-based record of expanding infrastructure and anthropogenic impacts along all permafrost affected coasts (100 km buffer, approximate to 6.2 Mio km(2)), named the Sentinel-1/2 derived Arctic Coastal Human Impact (SACHI) dataset. The completeness and thematic content goes beyond traditional satellite based approaches as well as other publicly accessible data sources. Three classes are considered: linear transport infrastructure (roads and railways), buildings, and other impacted area. C-band synthetic aperture radar and multi-spectral information (2016-2020) is exploited within a machine learning framework (gradient boosting machines and deep learning) and combined for retrieval with 10 m nominal resolution. In total, an area of 1243 km(2) constitutes human-built infrastructure as of 2016-2020. Depending on region, SACHI contains 8%-48% more information (human presence) than in OpenStreetMap. 221 (78%) more settlements are identified than in a recently published dataset for this region. 47% is not covered in a global night-time light dataset from 2016. At least 15% (180 km(2)) correspond to new or increased detectable human impact since 2000 according to a Landsat-based normalized difference vegetation index trend comparison within the analysis extent. Most of the expanded presence occurred in Russia, but also some in Canada and US. 31% and 5% of impacted area associated predominantly with oil/gas and mining industry respectively has appeared after 2000. 55% of the identified human impacted area will be shifting to above 0 C-circle ground temperature at two meter depth by 2050 if current permafrost warming trends continue at the pace of the last two decades, highlighting the critical importance to better understand how much and where Arctic infrastructure may become threatened by permafrost thaw.
This article presents inelastic thermal neutron scattering experiments probing the phonon dispersion in mesoporous silicon with pores 8 nm across. Scattering studies reveal the energy-momentum relation for transverse and longitudinal phonons along the high symmetry directions , and in the Brillouin zone. The dispersion up to phonon energies of 35 meV unambiguously proves that the phonon group velocities in highly-crystalline silicon are not modified by nanostructuring down to sub-10 nanometer length scales. On these length scales, there is apparently no effect of structuring on the elastic moduli of mesoporous silicon. No evidence can be found for phonon-softening in topologically complex, geometrically disordered mesoporous silicon putting it in contrast to silicon nanotubes and nanoribbons.