590 Tiere (Zoologie)
Refine
Year of publication
Document Type
- Article (21)
- Postprint (12)
- Doctoral Thesis (7)
- Conference Proceeding (1)
Is part of the Bibliography
- yes (41)
Keywords
- rodents (5)
- Actin cytoskeleton (2)
- Apoptosis (2)
- Cell polarity (2)
- Epithelial tube (2)
- Exocrine gland (2)
- Insect (2)
- Invagination (2)
- Organogenesis (2)
- Seasonality (2)
Social organisation in species with fluctuating population sizes can change with density. Therefore, information on (future) density obtained during early life stages may be associated with social behaviour. Olfactory cues may carry important social information. We investigated whether early life experience of different experimental densities was subsequently associated with differences in attraction to adult conspecific odours. We used common voles (Microtus arvalis), a rodent species undergoing extreme density fluctuations. We found that individuals originating from high experimental density populations kept in large outdoor enclosures invested more time in inspecting conspecific olfactory cues than individuals from low-density populations. Generally, voles from both treatments spent more time with the olfactory cues than expected by chance and did not differ in their latency to approach the odour samples. Our findings indicate either that early experience affects odour sensitivity or that animals evaluate the social information contained in conspecific odours differently, depending on their early life experience of conspecific density.
Neural signatures of temporal regularity and recurring patterns in random tonal sound sequences
(2021)
The auditory system is highly sensitive to recurring patterns in the acoustic input - even in otherwise unstructured material, such as white noise or random tonal sequences. Electroencephalography (EEG) research revealed a characteristic negative potential to periodically recurring auditory patterns - a response, which has been interpreted as memory trace-related and specific, rather than as a sign of periodicity-driven entrainment. Here, we aim to disentangle these two possible contributions by investigating the influence of a periodic sound sequence's inherent temporal regularity on event-related potentials. Participants were presented continuous sequences of short tones of random pitch, with some sequences containing a recurring pattern, and asked to indicate whether they heard a repetition. Patterns were either spaced equally across the random sequence (isochronous condition) or with a temporal jitter (jittered condition), which enabled us to differentiate between event-related potentials (and thus processing operations associated with a memory trace for a repeated pattern) and the periodic nature of the repetitions. A negative recurrence-related component could be observed independently of temporal regularity, was pattern-specific, and modulated by across trial repetition of the pattern. Critically, isochronous pattern repetition induced an additional early periodicity-related positive component, which started to build up already before the pattern onset and which was elicited undampedly even when the repeated pattern was occasionally not presented. This positive component likely reflects a sensory driven entrainment process that could be the foundation of a behavioural benefit in detecting temporally regular repetitions.
Deconstructing the Gestalt
(2021)
Snakes-a subset of lizards-have traditionally been divided into two major groups based on feeding mechanics: "macrostomy," involving the ingestion of proportionally large prey items; and "microstomy," the lack of this ability. "Microstomy"-considered present in scolecophidian and early-diverging alethinophidian snakes-is generally viewed as a symplesiomorphy shared with non-snake lizards. However, this perspective of "microstomy" as plesiomorphic and morphologically homogenous fails to recognize the complexity of this condition and its evolution across "microstomatan" squamates. To challenge this problematic paradigm, we formalize a new framework for conceptualizing and testing the homology of overall character complexes, or "morphotypes," which underlies our re-assessment of "microstomy." Using micro-computed tomography (micro-CT) scans, we analyze the morphology of the jaws and suspensorium across purported "microstomatan" squamates (scolecophidians, early-diverging alethinophidians, and non-snake lizards) and demonstrate that key components of the jaw complex are not homologous at the level of primary character state identity across these taxa. Therefore, rather than treating "microstomy" as a uniform condition, we instead propose that non-snake lizards, early-diverging alethinophidians, anomalepidids, leptotyphlopids, and typhlopoids each exhibit a unique and nonhomologous jaw morphotype: "minimal-kinesis microstomy," "snout-shifting," "axle-brace maxillary raking," "mandibular raking," and "single-axle maxillary raking," respectively. The lack of synapomorphy among scolecophidians is inconsistent with the notion of scolecophidians representing an ancestral snake condition, and instead reflects a hypothesis of the independent evolution of fossoriality, miniaturization, and "microstomy" in each scolecophidian lineage. We ultimately emphasize that a rigorous approach to comparative anatomy is necessary in constructing evolutionary hypotheses that accurately reflect biological reality.
Purpose:
Current research supports the effectiveness of mindfulness-based interventions for maladaptive eating behaviors associated with obesity and eating disorders. To investigate potential underlying mechanisms at work, reliable and valid instruments that allow for an exhaustive assessment of the context-specific construct Mindful Eating (ME) are needed. Therefore, the current work aimed to develop a comprehensive inventory reflecting a wide range of ME attitudes and behaviors: The Mindful Eating Inventory (MEI).
Methods & Results:
Study 1 describes the item pool development for an initial version of the MEI comprising various steps (compilation of items, expert ratings, focus groups and think aloud protocols by laypersons). Within Study 2, the factor structure of this initial version was explored in an online sample of N = 828 participants and the item pool was shortened via a sequential process based on statistical and content-related considerations. Exploratory factor analyses yielded a seven-factor structure. This structure could be confirmed within Study 3 on an independent online sample of N = 612 participants using confirmatory factor analysis. Criterion validity was supported by hypotheses-confirming correlations with eating-specific and global health-relevant outcomes.
Conclusion:
Our findings demonstrate that the MEI is a valid and reliable (in terms of internal consistency and retest-reliability) tool, which allows for a comprehensive assessment of various ME attitudes and behaviors within one parsimonious inventory. It further enabled us to propose a so far missing, initial scientific operational definition of this eating-specific construct, that may help to advance future research and clinical application by clarifying mechanisms of action.
Vitamin A, vitamin E and retinol-binding protein 4 (RBP4) are a focus of current obesity research in humans. The impact of body weight (BW) gain on fat-soluble vitamins and its associated parameters in equines has not been previously reported. Ten Shetland ponies and 9 Warmblood horses, all adult geldings, non-obese and healthy, were fed an excessive energy diet for 20 months to induce BW gain. Serum alpha-tocopherol (vitamin E), retinol (vitamin A), retinol-binding protein 4 (RBP4) and retinol/RBP4 ratio were analysed before BW gain induction and at six timepoints during the BW gaining period. The mean (+/- SD) % BW gain achieved during two years of excess energy intake was 29.9 +/- 19.4% for ponies and 17 +/- 6.74% for horses. Serum alpha-tocopherol increased significantly in ponies and horses during excess energy intake and circulating alpha-tocopherol levels correlated positively with alpha-tocopherol intake (r = .6; p < .001). Serum retinol concentrations showed variations during the study but without relation to intake. Serum RBP4 decreased at the end of the study. The retinol/RBP4 ratio increased with BW gain without differences between ponies and horses. In comparison with human research, the increase in the retinol/RBP4 ratio was unexpected and needs further elucidation.
African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.
Patterns of space use are often subject to large temporal and individual-level variation, due to seasonality in behaviour and environmental conditions as well as age- or sex-specific needs. Especially in temperate regions, seasonality likely influences space use even in non-migratory birds. In waterfowl of the family Anatidae, however, few studies have analyzed space use of the same individuals across the full annual cycle. We used a resident population of Mandarin Ducks (Aix galericulata) in northeast Germany to study their year-round space use in relation to season, sex, and age. We marked 172 birds with colour rings and surveyed relevant water bodies for re-encounters for several years. As space-use patterns we derived home ranges from minimum convex polygons and the number of water bodies used by individual birds. Our analysis revealed that individuals shifted their space use between seasons, in particular extending their home ranges during the non-breeding season. Between years, in contrast, birds tended to show season-specific site fidelity. Sex differences were apparent during both breeding and non-breeding season, males consistently having larger home ranges and using slightly more water bodies. No difference was found between first-year and adult birds. Our study demonstrates that mark-resighting can provide valuable information about space use in species with suitable behaviour and readily accessible habitat. In such cases, it may be a valid alternative to more expensive GPS-tracking or short-term manual radio telemetry, particularly within citizen-science projects.
1. We generally assume that animals should maximize information acquisition about their environment to make prudent decisions. But this is a naive assumption, as gaining information typically involves costs. <br /> 2. This is especially so in the social context, where interests between interacting partners usually diverge. The arms race involved in mutual assessment is characterized by the attempt to obtain revealing information from a partner while providing only as much information by oneself as is conducive to one's own intentions. <br /> 3. If obtaining information occasions costs in terms of time, energy and risk, animals should be selected to base their decisions on a cost-benefit ratio that takes account of the trade-off between the risk of making wrong choices and the costs involved in information acquisition, processing and use. <br /> 4. In addition, there may be physiological and/or environmental constraints limiting the ability to obtaining, processing and utilizing reliable information. <br /> 5. Here, we discuss recent empirical evidence for the proposition that social decisions are to an important extent based on the costs that result from acquiring, processing, evaluating and storing information. Using examples from different taxa and ecological contexts, we aim at drawing attention to the often neglected costs of information recipience, with emphasis on the potential role of sensory ecology and cognition in social decisions.
External temperature change has been shown to modify epigenetic patterns, such as DNA methylation, which regulates gene expression. DNA methylation is heritable, and as such provides a mechanism to convey environmental information to subsequent generations. Studies on epigenetic response to temperature increase are still scarce in wild mammals, even more so studies that compare tissue-specific epigenetic responses. Here, we aim to address differential epigenetic responses on a gene and gene pathway level in two organs, liver and testis. We chose these organs, because the liver is the main metabolic and thermoregulation organ, and epigenetic modifications in testis are potentially transmitted to the F2 generation. We focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to an ambient temperature increase of 10 degrees C, and investigated differential methylated regions of sons sired before and after the paternal exposure using Reduced Representation Bisulfite Sequencing. We detected both a highly tissue-specific epigenetic response, reflected in genes involved in organ-specific metabolic pathways, and a more general regulation of single genes epigenetically modified in both organs. We conclude that genomes are context-specifically differentially epigenetically regulated in response to temperature increase. These findings emphasize the epigenetic relevance in cell differentiation, which is essential for the specific function(s) of complex organs, and is represented in a diverse molecular regulation of genes and gene pathways. The results also emphasize the paternal contribution to adaptive processes.