Institut für Geographie
Refine
Year of publication
Document Type
- Article (321)
- Monograph/Edited Volume (160)
- Doctoral Thesis (62)
- Review (10)
- Master's Thesis (7)
- Other (3)
- Habilitation Thesis (1)
- Preprint (1)
Language
- German (441)
- English (119)
- Spanish (3)
- Multiple languages (2)
Keywords
- Curriculum Framework (37)
- European values education (37)
- Europäische Werteerziehung (37)
- Lehrevaluation (37)
- Studierendenaustausch (37)
- Unterrichtseinheiten (37)
- curriculum framework (37)
- lesson evaluation (37)
- student exchange (37)
- teaching units (37)
Institute
In the era of the Internet of Things and Big Data modern cars have become mobile electronic systems or computers on wheels. Car sensors record a multitude of car and traffic related data as well as environmental parameters outside the vehicle. The data recorded are spatio-temporal by nature (floating car data) and can thus be classified as geodata. Their geospatial potential is, however, not fully exploited so far. In this paper, we present an approach to collect, process and visualize floating car data for traffic-and environment-related applications. It is demonstrated that cartographic visualization, in particular, is as effective means to make the enormous stocks of machine-recorded data available to human perception, exploration and analysis.
Alluvial units are important in understanding the interactions of antecedent drainage evolution with fold growth along the flanks of active orogenic belts. This is demonstrated by the Anjihai River in the northern Chinese Tian Shan foreland, which at present flows northward cutting sequentially through the Nananjihai anticline, the Huoerguos anticline, and the Anjihai anticline. Three episodes of alluviation designated as fans F-a, F-b, and F-c are identified for the Anjihai River. These three alluvial terrain features comprise a series of terraces, where the topographic characteristics, geomorphologic structure, and up-warped longitudinal profiles indicate continuous uplift and lateral propagation of the Halaande anticline and the Anjihai anticline over the past 50 Icy. Shortly after similar to 3.6 ka when the oldest terrace during the period of the fan Fb sedimentation was formed, significant rock uplift at the overlapping zone of the Anjihai anticline and the Halaande anticline led to the eastward deflection of the antecedent Anjihai River. A series of local terraces with elevation decreasing eastward indicate the gradual eastward migration of the channel of the Anjihai River during the period of the fan F-c sedimentation. Finally the Anjihai River occupied the previous course of the Jingou River when the latter was deflected eastward in response to rock uplift of the Anjihai anticline, presently flowing across the eastern tip of the Anjihai anticline. (C) 2017 Elsevier B.V. All rights reserved.
Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.
This article gives insight in a running dissertation at the University in Potsdam. Point of discussion is the spatial and temporal distribution of emergencies of German fire brigades that have not sufficiently been scientifically examined. The challenge is seen in Big Data: enormous amounts of data that exist now (or can be collected in the future) and whose variables are linked to one another. These analyses and visualizations can form a basis for strategic, operational and tactical planning, as well as prevention measures. The user-centered (geo-) visualization of fire brigade data accessible to the general public is a scientific contribution to the research topic 'geovisual analytics and geographical profiling'. It may supplement antiquated methods such as the so-called pinmaps as well as the areas of engagement that are freehand constructions in GIS. Considering police work, there are already numerous scientific projects, publications, and software solutions designed to meet the specific requirements of Crime Analysis and Crime Mapping. By adapting and extending these methods and techniques, civil security research can be tailored to the needs of fire departments. In this paper, a selection of appropriate visualization methods will be presented and discussed.
Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the similar to 29,000 km(2) Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics. (C) 2016 Elsevier Inc. All rights reserved.
Und der Zukunft abgewandt
(2010)
Seit dem Ende der DDR, das den Zusammenbruch des Ostblocks und damit die Beendigung des »Kalten Kriegs« einleitete, wird verstärkt versucht, das Wesen dieses Staates zu definieren und damit seine Folgen auf wirtschaftlicher, sozialer, psychologischer und bildungspolitischer Ebene zu verstehen und einzuordnen. Alexandra Budke analysiert in diesem Band das Schulfach Geographie, das neben der Staatsbürgerkunde und der Geschichte ein zentrales Fach war und in dem die in den Lehrplänen definierte »staatsbürgerliche, weltanschauliche oder ideologische Erziehung« auf der Grundlage des Marxismus-Leninismus stattfinden sollte. Sie klärt, inwiefern Geographieunterricht in der DDR genutzt wurde, um geopolitische Interessen des Staates zu kommunizieren und zu verbreiten. Damit lässt sich durch die detaillierte Analyse des Fachunterrichts auch die Frage beantworten, ob SchülerInnen im Unterricht politisch manipuliert wurden und welche Handlungsmöglichkeiten die zentralen Akteure des Unterrichts, die LehrerInnen und die SchülerInnen, im Rahmen der durch die Bildungspolitik gesetzten curricularen Vorgaben wahrgenommen haben.
Direct anthropogenic influences on the Earth’s subsurface during drilling, extraction or injection activities, can affect land stability by causing subsidence, uplifts or lateral displacements. They can occur in localized as well as in uninhabited and inhabited regions. Thus the associated risks for humans, infrastructure, and environment must be minimized. To achieve this, appropriate surveillance methods must be found that can be used for simultaneous monitoring during such activities. Multi-temporal synthetic aperture radar interferometry (MT-InSAR) methods like the Persistent Scatterer Interferometry (PSI) and the Small BAseline Subsets (SBAS) have been developed as standard approaches for satellite-based surface displacement monitoring. With increasing spatial resolution and availability of SAR sensors in recent years, MT-InSAR can be valuable for the detection and mapping of even the smallest man-made displacements.
This doctoral thesis aims at investigating the capacities of the mentioned standard methods for this purpose, and comprises three main objectives against the backdrop of a user-friendly surveillance service:
(1) the spatial and temporal significance assessment against leveling, (2) the suitability evaluation of PSI and SBAS under different conditions, and (3) the analysis of the link between surface motion and subsurface processes.
Two prominent case studies on anthropogenic induced subsurface processes in Germany serve as the basis for this goal. The first is the distinct urban uplift with severe damages at Staufen im Breisgau that has been associated since 2007 with a failure to implement a shallow geothermal energy supply for an individual building. The second case study considers the pilot project of geological carbon dioxide (CO2) storage at Ketzin, and comprises borehole drilling and fluid injection of more than 67 kt CO2 between 2008 and 2013. Leveling surveys at Staufen and comprehensive background knowledge of the underground processes gained from different kinds of in-situ measurements at both locations deliver a suitable basis for this comparative study and the above stated objectives. The differences in location setting, i.e. urban versus rural site character, were intended to investigate the limitations in the applicability of PSI and SBAS.
For the MT-InSAR analysis, X-band images from the German TerraSAR-X and TanDEM-X satellites were acquired in the standard Stripmap mode with about 3 m spatial resolution in azimuth and range direction. Data acquisition lasted over a period of five years for Staufen (2008-2013), and four years for Ketzin (2009-2013). For the first approximation of the subsurface source, an inversion of the InSAR outcome in Staufen was applied. The modeled uplift based on complex hydromechanical simulations and a correlation analysis with bottomhole pressure data were used for comparison with MT-InSAR measurements at Ketzin.
In response to the defined objectives of this thesis, a higher level of detail can be achieved in mapping surface displacements without in-situ effort by using MT-InSAR in comparison to leveling (1). A clear delineation of the elliptical shaped uplift border and its magnitudes at different parts was possible at Staufen, with the exception of a vegetated area in the northwest. Vegetation coverage and the associated temporal signal decorrelation are the main limitations of MT-InSAR as clearly demonstrated at the Ketzin test site. They result in insufficient measurement point density and unwrapping issues. Therefore, spatial resolutions of one meter or better are recommended to achieve an adequate point density for local displacement analysis and to apply signal noise reduction. Leveling measurements can provide a complementary data source here, but require much effort pertaining to personnel even at the local scale. Horizontal motions could be identified at Staufen by only comparing the temporal evolution of the 1D line of sight (LOS) InSAR measurements with the available leveling data. An exception was the independent LOS decomposition using ascending and descending data sets for the period 2012-2013. The full 3D displacement field representation failed due to insufficient orbit-related, north-south sensitivity of the satellite-based measurements. By using the dense temporal mapping capabilities of the TerraSAR-X/TanDEM-X satellites after every 11 days, the temporal displacement evolution could be captured as good as that with leveling.
With respect to the tested methods and in the view of generality, SBAS should be preferred over PSI (2). SBAS delivered a higher point density, and was therefore less affected by phase unwrapping issues in both case studies. Linking surface motions with subsurface processes is possible when considering simplified geophysical models (3), but it still requires intensive research to gain a deep understanding.