## Spectral modeling

### Refine

#### Institute

Overwhelming observational and theoretical evidence suggests that the winds of massive stars are highly clumped. We briefly discuss the influence of clumping on model diagnostics and the difficulties of allowing for the influence of clumping on model spectra. Because of its simplicity, and because of computational ease, most spectroscopic analyses incorporate clumping using the volume filling factor. The biases introduced by this approach are uncertain. To investigate alternative clumping models, and to help determine the validity of parameters derived using the volume filling factor method, we discuss results derived using an alternative model in which we assume that the wind is composed of optically thick shells.

We present preliminary results of a tailored atmosphere analysis of six Galactic WC stars using UV, optical, and mid-infrared Spitzer IRS data. With these data, we are able to sample regions from 10 to 10³ stellar radii, thus to determine wind clumping in different parts of the wind. Ultimately, derived wind parameters will be used to accuratelymeasure neon abundances, and to so test predicted nuclear-reaction rates.

We apply the 3-dimensional radiative transport codeWind3D to 3D hydrodynamic models of Corotating Interaction Regions to fit the detailed variability of Discrete Absorption Components observed in Si iv UV resonance lines of HD 64760 (B0.5 Ib). We discuss important effects of the hydrodynamic input parameters on these large-scale equatorial wind structures that determine the detailed morphology of the DACs computed with 3D transfer. The best fit model reveals that the CIR in HD 64760 is produced by a source at the base of the wind that lags behind the stellar surface rotation. The non-corotating coherent wind structure is an extended density wave produced by a local increase of only 0.6% in the smooth symmetric wind mass-loss rate.

Modeling expanding atmospheres is a difficult task because of the extreme non-LTE situation, the need to account for complex model atoms, especially for the iron-group elements with their millions of lines, and because of the supersonic expansion. Adequate codes have been developed e.g. by Hillier (CMFGEN), the Munich group (Puls, Pauldrach), and in Potsdam (PoWR code, Hamann et al.). While early work was based on the assumption of a smooth and homogeneous spherical stellar wind, the need to account for clumping became obvious about ten years ago. A relatively simple first-order clumping correction was readily implemented into the model codes. However, its simplifying assumptions are severe. Most importantly, the clumps are taken to be optically thin at all frequencies (”microclumping”). We discuss the consequences of this approximation and describe an approach to account for optically thick clumps (“macroclumping”). First results demonstrate that macroclumping can generally reduce the strength of spectral features, depending on their optical thickness. The recently reported discrepancy between the Hα diagnostic and the Pv resonance lines in O star spectra can be resolved without decreasing the mass-loss rates, when macroclumping is taken into account.