92C05 Biophysics
Refine
Has Fulltext
- yes (3)
Document Type
- Doctoral Thesis (3)
Is part of the Bibliography
- yes (3)
Keywords
- Bio-Hybridsystem (1)
- Biophysik (1)
- Interaktion (1)
- Isometrie (1)
- Mechanomyografie (1)
- Mikroviskosität (1)
- Pantoea stewartii (1)
- Partikeltransport (1)
- Synchronisation (1)
- active transport (1)
As society paves its way towards device miniaturization and precision medicine, micro-scale actuation and guided transport become increasingly prominent research fields, with high potential impact in both technological and clinical contexts. In order to accomplish directed motion of micron-sized objects, as biosensors and drug-releasing microparticles, towards specific target sites, a promising strategy is the use of living cells as smart biochemically-powered carriers, building the so-called bio-hybrid systems. Inspired by leukocytes, native cells of living organisms efficiently migrating to critical targets as tumor tissue, an emerging concept is to exploit the amoeboid crawling motility of such cells as mean of transport for drug delivery applications.
In the research work described in this thesis, I synergistically applied experimental, computational and theoretical modeling approaches to investigate the behaviour and transport mechanism of a novel kind of bio-hybrid system for active transport at the micro-scale, referred to as cellular truck. This system consists of an amoeboid crawling cell, the carrier, attached to a microparticle, the cargo, which may ideally be drug-loaded for specific therapeutic treatments.
For the purposes of experimental investigation, I employed the amoeba Dictyostelium discoideum as crawling cellular carrier, being a renowned model organism for leukocyte migration and, in general, for eukaryotic cell motility. The performed experiments revealed a complex recurrent cell-cargo relative motion, together with an intermittent motility of the cellular truck as a whole. The evidence suggests the presence of cargoes on amoeboid cells to act as mechanical stimulus leading cell polarization, thus promoting cell motility and giving rise to the observed intermittent dynamics of the truck. Particularly, bursts in cytoskeletal polarity along the cell-cargo axis have been
found to occur in time with a rate dependent on cargo geometrical features, as particle diameter. Overall, the collected experimental evidence pointed out a pivotal role of cell-cargo interactions in the emergent cellular truck motion dynamics. Especially, they can determine the transport capabilities of amoeboid cells, as the cargo size significantly impacts the cytoskeletal activity and repolarization dynamics along the cell-cargo axis, the latter responsible for truck displacement and reorientation.
Furthermore, I developed a modeling framework, built upon the experimental evidence on cellular truck behaviour, that connects the relative dynamics and interactions arising at the truck scale with the actual particle transport dynamics. In fact, numerical simulations of the proposed model successfully reproduced the phenomenology of the cell-cargo system, while enabling the prediction of the transport properties of cellular trucks over larger spatial and temporal scales. The theoretical analysis provided a deeper understanding of the role of cell-cargo interaction on mass transport, unveiling in particular how the long-time transport efficiency is governed by the interplay between the persistence time of cell polarity and time scales of the relative dynamics stemming from cell-cargo interaction. Interestingly, the model predicts the existence of an optimal cargo size, enhancing the diffusivity of cellular trucks; this is in line with previous independent experimental data, which appeared rather counterintuitive and had no explanation prior to this study.
In conclusion, my research work shed light on the importance of cargo-carrier interactions in the context of crawling cell-mediated particle transport, and provides a prototypical, multifaceted framework for the analysis and modelling of such complex bio-hybrid systems and their perspective optimization.
In nature, bacteria are found to reside in multicellular communities encased in self-produced extracellular matrices. Indeed, biofilms are the default lifestyle of the bacteria which cause persistent infections in humans. The biofilm assembly protects bacterial cells from desiccation and limits the effectiveness of antimicrobial treatments. A myriad of biomolecules in the extracellular matrix, including proteins, exopolysaccharides, lipids, extracellular DNA and other, form a dense and viscoelastic three dimensional network. Many studies emphasized that a destabilization of the mechanical integrity of biofilm architectures potentially eliminates the protective shield and renders bacteria more susceptible to the immune system and antibiotics. Pantoea stewartii is a plant pathogen which infects monocotyledons such as maize and sweet corn. These bacteria produce dense biofilms in the xylem of infected plants which cause wilting of plants and crops. Stewartan is an exopolysaccharide which is produced by Pantoea stewartii and secreted as the major component to the extracellular matrix. It consists of heptasaccharide repeating units with a high degree of polymerization (2-4 MDa). In this work, the physicochemical properties of stewartan were investigated to understand the contributions of this exopolysaccharide to the mechanical integrity and cohesiveness of Pantoea stewartii biofilms. Therefore, a coarse-grained model of stewartan was developed with computational techniques to obtain a model for its three dimensional structural features. Here, coarse-grained molecular dynamic simulations revealed that the exopolysaccharide forms a hydrogel in which the exopolysaccharide chains arrange into a three dimensional mesh-like network. Simulations at different concentrations were used to investigate the influence of the water content on the network formation. Stewartan was further purified from 72 h grown Pantoea stewartii biofilms and the diffusion of bacteriophage and differently-sized nanoparticles (which ranged from 1.1 to 193 nm diameter) was analyzed in reconstituted stewartan solutions. Fluorescence correlation spectroscopy and single-particle tracking revealed that the stewartan network impeded the mobility of a set of differently-sized fluorescent particles in a size-dependent manner. Diffusion of these particles became more anomalous, as characterized by fitting the diffusion data to an anomalous diffusion model, with increasing stewartan concentrations. Further bulk and microrheological experiments were used to analyze the transitions in stewartan fluid behavior and stewartan chain entanglements were described. Moreover, it was noticed, that a small fraction of bacteriophage particles was trapped in small-sized pores deviating from classical random walks which highlighted the structural heterogeneity of the stewartan network. Additionally, the mobility of fluorescent particles
also depended on the charge of the stewartan exopolysaccharide and a model of a molecular sieve for the stewartan network was proposed. The here reported structural features of the stewartan polymers were used to provide a detailed description of the mechanical properties of typically glycan-based biofilms such as the one from Pantoea stewartii.
In addition, the mechanical properties of the biofilm architecture are permanently sensed by the embedded bacteria and enzymatic modifications of the extracellular matrix take place to address environmental cues. Hence, in this work the influence of enzymatic degradation of the stewartan exopolysaccharides on the overall exopolysaccharide network structure was analyzed to describe relevant physiological processes in Pantoea stewartii biofilms. Here, the stewartan hydrolysis kinetics of the tailspike protein from the ΦEa1h bacteriophage, which is naturally found to infect Pantoea stewartii cells, was compared to WceF. The latter protein is expressed from the Pantoea stewartii stewartan biosynthesis gene cluster wce I-III. The degradation of stewartan by the ΦEa1h tailspike protein was shown to be much faster than the hydrolysis kinetics of WceF, although both enzymes cleaved the β D GalIII(1→3)-α-D-GalI glycosidic linkage from the stewartan backbone. Oligosaccharide fragments which were produced during the stewartan cleavage, were analyzed in size-exclusion chromatography and capillary electrophoresis. Bioinformatic studies and the analysis of a WceF crystal structure revealed a remarkably high structural similarity of both proteins thus unveiling WceF as a bacterial tailspike-like protein. As a consequence, WceF might play a role in stewartan chain length control in Pantoea stewartii biofilms.
Synchronisationsphänomene myotendinöser Oszillationen interagierender neuromuskulärer Systeme
(2014)
Muskeln oszillieren nachgewiesener Weise mit einer Frequenz um 10 Hz. Doch was geschieht mit myofaszialen Oszillationen, wenn zwei neuromuskuläre Systeme interagieren? Die Dissertation widmet sich dieser Fragestellung bei isometrischer Interaktion. Während der Testmessungen ergaben sich Hinweise für das Vorhandensein von möglicherweise zwei verschiedenen Formen der Isometrie. Arbeiten zwei Personen isometrisch gegeneinander, können subjektiv zwei Modi eingenommen werden: man kann entweder isometrisch halten – der Kraft des Partners widerstehen – oder isometrisch drücken – gegen den isometrischen Widerstand des Partners arbeiten. Daher wurde zusätzlich zu den Messungen zur Interaktion zweier Personen an einzelnen Individuen geprüft, ob möglicherweise zwei Formen der Isometrie existieren. Die Promotion besteht demnach aus zwei inhaltlich und methodisch getrennten Teilen: I „Single-Isometrie“ und II „Paar-Isometrie“. Für Teil I wurden mithilfe eines pneumatisch betriebenen Systems die hypothetischen Messmodi Halten und Drücken während isometrischer Aktion untersucht. Bei n = 10 Probanden erfolgte parallel zur Aufzeichnung des Drucksignals während der Messungen die Erfassung der Kraft (DMS) und der Beschleunigung sowie die Aufnahme der mechanischen Muskeloszillationen folgender myotendinöser Strukturen via Mechanomyo- (MMG) bzw. Mechanotendografie (MTG): M. triceps brachii (MMGtri), Trizepssehne (MTGtri), M. obliquus externus abdominis (MMGobl). Pro Proband wurden bei 80 % der MVC sowohl sechs 15-Sekunden-Messungen (jeweils drei im haltenden bzw. drückenden Modus; Pause: 1 Minute) als auch vier Ermüdungsmessungen (jeweils zwei im haltenden bzw. drückenden Modus; Pause: 2 Minuten) durchgeführt. Zum Vergleich der Messmodi Halten und Drücken wurden die Amplituden der myofaszialen Oszillationen sowie die Kraftausdauer herangezogen. Signifikante Unterschiede zwischen dem haltenden und dem drückenden Modus zeigten sich insbesondere im Bereich der Ermüdungscharakteristik. So lassen Probanden im haltenden Modus signifikant früher nach als im drückenden Modus (t(9) = 3,716; p = .005). Im drückenden Modus macht das längste isometrische Plateau durchschnittlich 59,4 % der Gesamtdauer aus, im haltenden sind es 31,6 % (t(19) = 5,265, p = .000). Die Amplituden der Single-Isometrie-Messungen unterscheiden sich nicht signifikant. Allerdings variieren die Amplituden des MMGobl zwischen den Messungen im drückenden Modus signifikant stärker als im haltenden Modus. Aufgrund dieser teils signifikanten Unterschiede zwischen den beiden Messmodi wurde dieses Setting auch im zweiten Teil „Paar-Isometrie“ berücksichtigt. Dort wurden n = 20 Probanden – eingeteilt in zehn gleichgeschlechtliche Paare – während isometrischer Interaktion untersucht. Die Sensorplatzierung erfolgte analog zu Teil I. Die Oszillationen der erfassten MTG- sowie MMG-Signale wurden u.a. mit Algorithmen der Nichtlinearen Dynamik auf ihre Kohärenz hin untersucht. Durch die Paar-Isometrie-Messungen zeigte sich, dass die Muskeln und die Sehnen beider neuromuskulärer Systeme bei Interaktion im bekannten Frequenzbereich von 10 Hz oszillieren. Außerdem waren sie in der Lage, sich bei Interaktion so aufeinander abzustimmen, dass sich eine signifikante Kohärenz entwickelte, die sich von Zufallspaarungen signifikant unterscheidet (Patchanzahl: t(29) = 3,477; p = .002; Summe der 4 längsten Patches: t(29) = 7,505; p = .000). Es wird der Schluss gezogen, dass neuromuskuläre Komplementärpartner in der Lage sind, sich im Sinne kohärenten Verhaltens zu synchronisieren. Bezüglich der Parameter zur Untersuchung der möglicherweise vorhandenen zwei Formen der Isometrie zeigte sich bei den Paar-Isometrie-Messungen zwischen Halten und Drücken ein signifikanter Unterschied bei der Ermüdungscharakteristik sowie bezüglich der Amplitude der MMGobl. Die Ergebnisse beider Teilstudien bestärken die Hypothese, dass zwei Formen der Isometrie existieren. Fraglich ist, ob man überhaupt von Isometrie sprechen kann, da jede isometrische Muskelaktion aus feinen Oszillationen besteht, die eine per Definition postulierte Isometrie ausschließen. Es wird der Vorschlag unterbreitet, die Isometrie durch den Begriff der Homöometrie auszutauschen. Die Ergebnisse der Paar-Isometrie-Messungen zeigen u.a., dass neuromuskuläre Systeme in der Lage sind, ihre myotendinösen Oszillationen so aufeinander abzustimmen, dass kohärentes Verhalten entsteht. Es wird angenommen, dass hierzu beide neuromuskulären Systeme funktionell intakt sein müssen. Das Verfahren könnte für die Diagnostik funktioneller Störungen relevant werden.