## 60J28 Applications of continuous-time Markov processes on discrete state spaces

### Refine

#### Has Fulltext

- yes (4)

#### Document Type

- Preprint (4)

#### Language

- English (4)

#### Keywords

- Markov chain (2)
- molecular motor (2)
- time duality (2)
- absorbing boundary (1)
- absorption (1)
- continuous time Markov chain (1)
- hitting times (1)
- random walk (1)
- random walk on Abelian group (1)
- reciprocal class (1)

#### Institute

Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of a continuous time random walk with values in a countable Abelian group, we compute explicitly its reciprocal characteristics and we present an integral characterization of it. Our main tool is a new iterated version of the celebrated Mecke's formula from the point process theory, which allows us to study, as transformation on the path space, the addition of random loops. Thanks to the lattice structure of the set of loops, we even obtain a sharp characterization. At the end, we discuss several examples to illustrate the richness of reciprocal classes. We observe how their structure depends on the algebraic properties of the underlying group.

Transport Molecules play a crucial role for cell viability. Amongst others, linear motors transport cargos along rope-like structures from one location of the cell to another in a stochastic fashion. Thereby each step of the motor, either forwards or backwards, bridges a fixed distance. While moving along the rope the motor can also detach and is lost. We give here a mathematical formalization of such dynamics as a random process which is an extension of Random Walks, to which we add an absorbing state to model the detachment of the motor from the rope. We derive particular properties of such processes that have not been available before. Our results include description of the maximal distance reached from the starting point and the position from which detachment takes place. Finally, we apply our theoretical results to a concrete established model of the transport molecule Kinesin V.

Amongst the many complex processes taking place in living cells, transport of cargoes across the cytosceleton is fundamental to cell viability and activity. To move cargoes between the different cell parts, cells employ Molecular Motors. The motors operate by transporting cargoes along the so-called cellular micro-tubules, namely rope-like structures that connect, for instance, the cell-nucleus and outer membrane. We introduce a new Markov Chain, the killed Quasi-Random-Walk, for such transport molecules and derive properties like the maximal run length and time. Furthermore we introduce permuted balance, which is a more flexible extension of the ordinary reversibility and introduce the notion of Time Duality, which compares certain passage times pathwise. We give a number of sufficient conditions for Time Duality based on the geometry of the transition graph. Both notions are closely related to properties of the killed Quasi-Random-Walk.

We say that (weak/strong) time duality holds for continuous time quasi-birth-and-death-processes if, starting from a fixed level, the first hitting time of the next upper level and the first hitting time of the next lower level have the same distribution. We present here a criterion for time duality in the case where transitions from one level to another have to pass through a given single state, the so-called bottleneck property. We also prove that a weaker form of reversibility called balanced under permutation is sufficient for the time duality to hold. We then discuss the general case.