## 004 Datenverarbeitung; Informatik

### Refine

#### Year of publication

- 2017 (6) (remove)

#### Language

- English (6) (remove)

#### Keywords

- Graphtransformationen (2)
- Graphtransformationssysteme (2)
- graph constraints (2)
- graph transformation (2)
- Abhängigkeiten (1)
- Bisimulation (1)
- Cloud-Sicherheit (1)
- Cloud-Speicher (1)
- Erfüllbarkeitsanalyse (1)
- Graph-Constraints (1)

#### Institute

- Hasso-Plattner-Institut für Digital Engineering gGmbH (6) (remove)

Today, software has become an intrinsic part of complex distributed embedded real-time systems. The next generation of embedded real-time systems will interconnect the today unconnected systems via complex software parts and the service-oriented paradigm. Therefore besides timed behavior and probabilistic behaviour also structure dynamics, where the architecture can be subject to changes at run-time, e.g. when dynamic binding of service end-points is employed or complex collaborations are established dynamically, is required. However, a modeling and analysis approach that combines all these necessary aspects does not exist so far.
To fill the identified gap, we propose Probabilistic Timed Graph Transformation Systems (PTGTSs) as a high-level description language that supports all the necessary aspects of structure dynamics, timed behavior, and probabilistic behavior. We introduce the formal model of PTGTSs in this paper and present a mapping of models with finite state spaces to probabilistic timed automata (PTA) that allows to use the PRISM model checker to analyze PTGTS models with respect to PTCTL properties.

Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic "Operating the Cloud". Our goal is to provide a forum for the exchange of knowledge and experience between industry and academia. Co-located with the event is the HPI's Future SOC Lab day, which offers an additional attractive and conducive environment for scientific and industry related discussions. "Operating the Cloud" aims to be a platform for productive interactions of innovative ideas, visions, and upcoming technologies in the field of cloud operation and administration.
On the occasion of this symposium we called for submissions of research papers and practitioner's reports. A compilation of the research papers realized during the fourth HPI cloud symposium "Operating the Cloud" 2016 are published in this proceedings. We thank the authors for exciting presentations and insights into their current work and research.
Moreover, we look forward to more interesting submissions for the upcoming symposium later in the year. Every year, the Hasso Plattner Institute (HPI) invites guests from industry and academia to a collaborative scientific workshop on the topic "Operating the Cloud". Our goal is to provide a forum for the exchange of knowledge and experience between industry and academia. Co-located with the event is the HPI's Future SOC Lab day, which offers an additional attractive and conducive environment for scientific and industry related discussions. "Operating the Cloud" aims to be a platform for productive interactions of innovative ideas, visions, and upcoming technologies in the field of cloud operation and administration.

While offering significant expressive power, graph transformation systems often come with rather limited capabilities for automated analysis, particularly if systems with many possible initial graphs and large or infinite state spaces are concerned. One approach that tries to overcome these limitations is inductive invariant checking. However, the verification of inductive invariants often requires extensive knowledge about the system in question and faces the approach-inherent challenges of locality and lack of context.
To address that, this report discusses k-inductive invariant checking for graph transformation systems as a generalization of inductive invariants. The additional context acquired by taking multiple (k) steps into account is the key difference to inductive invariant checking and is often enough to establish the desired invariants without requiring the iterative development of additional properties.
To analyze possibly infinite systems in a finite fashion, we introduce a symbolic encoding for transformation traces using a restricted form of nested application conditions. As its central contribution, this report then presents a formal approach and algorithm to verify graph constraints as k-inductive invariants. We prove the approach's correctness and demonstrate its applicability by means of several examples evaluated with a prototypical implementation of our algorithm.

Graphs are ubiquitous in Computer Science. For this reason, in many areas, it is very important to have the means to express and reason about graph properties. In particular, we want to be able to check automatically if a given graph property is satisfiable. Actually, in most application scenarios it is desirable to be able to explore graphs satisfying the graph property if they exist or even to get a complete and compact overview of the graphs satisfying the graph property.
We show that the tableau-based reasoning method for graph properties as introduced by Lambers and Orejas paves the way for a symbolic model generation algorithm for graph properties. Graph properties are formulated in a dedicated logic making use of graphs and graph morphisms, which is equivalent to firstorder logic on graphs as introduced by Courcelle. Our parallelizable algorithm gradually generates a finite set of so-called symbolic models, where each symbolic model describes a set of finite graphs (i.e., finite models) satisfying the graph property. The set of symbolic models jointly describes all finite models for the graph property (complete) and does not describe any finite graph violating the graph property (sound). Moreover, no symbolic model is already covered by another one (compact). Finally, the algorithm is able to generate from each symbolic model a minimal finite model immediately and allows for an exploration of further finite models. The algorithm is implemented in the new tool AutoGraph.

The correctness of model transformations is a crucial element for model-driven engineering of high quality software. In particular, behavior preservation is the most important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques either show that specific properties are preserved, or more generally and complex, they show some kind of behavioral equivalence or refinement between source and target model of the transformation. Both kinds of behavior preservation verification goals have been presented with automatic tool support for the instance level, i.e. for a given source and target model specified by the model transformation. However, up until now there is no automatic verification approach available at the transformation level, i.e. for all source and target models specified by the model transformation.
In this report, we extend our results presented in [27] and outline a new sophisticated approach for the automatic verification of behavior preservation captured by bisimulation resp. simulation for model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we show that the behavior preservation problem can be reduced to invariant checking for graph transformation and that the resulting checking problem can be addressed by our own invariant checker even for a complex example where a sequence chart is transformed into communicating automata. We further discuss today's limitations of invariant checking for graph transformation and motivate further lines of future work in this direction.

Developing large software projects is a complicated task and can be demanding for developers. Continuous integration is common practice for reducing complexity. By integrating and testing changes often, changesets are kept small and therefore easily comprehensible. Travis CI is a service that offers continuous integration and continuous deployment in the cloud. Software projects are build, tested, and deployed using the Travis CI infrastructure without interrupting the development process. This report describes how Travis CI works, presents how time-driven, periodic building is implemented as well as how CI data visualization can be done, and proposes a way of dealing with dependency problems.