Refine
Document Type
- Article (14)
- Doctoral Thesis (1)
- Part of Periodical (1)
- Postprint (1)
- Review (1)
Keywords
- Reading (5)
- Eye movements (4)
- Individual differences (3)
- Scanpaths (3)
- psycholinguistics (3)
- Parsing (2)
- event expectations (2)
- implicit bias (2)
- language (2)
- open data (2)
Institute
The phenomenon of forced fixations suggests that readers sometimes fixate a word (due to oculomotor constraints) even though they intended to skip it (due to parafoveal cognitive-linguistic processing). We investigate whether this leads readers to look directly at a word but not pay attention to it. We used a gaze-contingent boundary paradigm to dissociate parafoveal and foveal information (e.g., the word phone changed to scarf once the reader's eyes moved to it) and asked questions about the sentence to determine which one the reader encoded. When the word was skipped or fixated only briefly (i.e., up to 100 ms) readers were more likely to report reading the parafoveal than the fixated word, suggesting that there are cases in which readers look directly at a word but their minds ignore it, leading to the illusion of reading something they did not fixate.
Recent studies using the gaze-contingent boundary paradigm reported a reversed preview benefit- shorter fixations on a target word when an unrelated preview was easier to process than the fixated target (Schotter & Leinenger, 2016). This is explained viaforeedfixatiotzs-short fixations on words that would ideally be skipped (because lexical processing has progressed enough) but could not be because saccade planning reached a point of no return. This contrasts with accounts of preview effects via trans-saccadic integration-shorter fixations on a target word when the preview is more similar to it (see Cutter. Drieghe, & Liversedge, 2015). In addition, if the previewed word-not the fixated target-determines subsequent eye movements, is it also this word that enters the linguistic processing stream? We tested these accounts by having 24 subjects read 150 sentences in the boundary paradigm in which both the preview and target were initially plausible but later one, both, or neither became implausible, providing an opportunity to probe which one was linguistically encoded. In an intervening buffer region, both words were plausible, providing an opportunity to investigate trans-saccadic integration. The frequency of the previewed word affected progressive saccades (i.e.. forced fixations) as well as when transsaccadic integration failure increased regressions, but, only the implausibility of the target word affected semantic encoding. These data support a hybrid account of saccadic control (Reingold, Reichle. Glaholt, & Sheridan, 2012) driven by incomplete (often parafoveal) word recognition, which occurs prior to complete (often foveal) word recognition.
The effect of decay and lexical uncertainty on processing long-distance dependencies in reading
(2020)
To make sense of a sentence, a reader must keep track of dependent relationships between words, such as between a verb and its particle (e.g. turn the music down). In languages such as German, verb-particle dependencies often span long distances, with the particle only appearing at the end of the clause. This means that it may be necessary to process a large amount of intervening sentence material before the full verb of the sentence is known. To facilitate processing, previous studies have shown that readers can preactivate the lexical information of neighbouring upcoming words, but less is known about whether such preactivation can be sustained over longer distances. We asked the question, do readers preactivate lexical information about long-distance verb particles? In one self-paced reading and one eye tracking experiment, we delayed the appearance of an obligatory verb particle that varied only in the predictability of its lexical identity. We additionally manipulated the length of the delay in order to test two contrasting accounts of dependency processing: that increased distance between dependent elements may sharpen expectation of the distant word and facilitate its processing (an antilocality effect), or that it may slow processing via temporal activation decay (a locality effect). We isolated decay by delaying the particle with a neutral noun modifier containing no information about the identity of the upcoming particle, and no known sources of interference or working memory load. Under the assumption that readers would preactivate the lexical representations of plausible verb particles, we hypothesised that a smaller number of plausible particles would lead to stronger preactivation of each particle, and thus higher predictability of the target. This in turn should have made predictable target particles more resistant to the effects of decay than less predictable target particles. The eye tracking experiment provided evidence that higher predictability did facilitate reading times, but found evidence against any effect of decay or its interaction with predictability. The self-paced reading study provided evidence against any effect of predictability or temporal decay, or their interaction. In sum, we provide evidence from eye movements that readers preactivate long-distance lexical content and that adding neutral sentence information does not induce detectable decay of this activation. The findings are consistent with accounts suggesting that delaying dependency resolution may only affect processing if the intervening information either confirms expectations or adds to working memory load, and that temporal activation decay alone may not be a major predictor of processing time.
Quadruplex negatio invertit?
(2020)
So-called "depth charge" sentences (No head injury is too trivial to be ignored) are interpreted by the vast majority of speakers to mean the opposite of what their compositional semantics would dictate. The semantic inversion that is observed for sentences of this type is the strongest and most persistent linguistic illusion known to the field (Wason & Reich, 1979). However, it has recently been argued that the preferred interpretation arises not because of a prevailing failure of the processing system, but rather because the non-compositional meaning is grammaticalized in the form of a stored construction (Cook & Stevenson, 2010; Fortuin, 2014). In a series of five experiments, we investigate whether the depth charge effect is better explained by processing failure due to memory overload (the overloading hypothesis) or by the existence of an underlying grammaticalized construction with two available meanings (the ambiguity hypothesis). To our knowledge, our experiments are the first to explore the on-line processing profile of depth charge sentences. Overall, the data are consistent with specific variants of the ambiguity and overloading hypotheses while providing evidence against other variants. As an extension of the overloading hypothesis, we suggest two heuristic processes that may ultimately yield the incorrect reading when compositional processing is suspended for strategic reasons.
False positives and other statistical errors in standard analyses of eye movements in reading
(2017)
In research on eye movements in reading, it is common to analyze a number of canonical dependent measures to study how the effects of a manipulation unfold over time. Although this gives rise to the well-known multiple comparisons problem, i.e. an inflated probability that the null hypothesis is incorrectly rejected (Type I error), it is accepted standard practice not to apply any correction procedures. Instead, there appears to be a widespread belief that corrections are not necessary because the increase in false positives is too small to matter. To our knowledge, no formal argument has ever been presented to justify this assumption. Here, we report a computational investigation of this issue using Monte Carlo simulations. Our results show that, contrary to conventional wisdom, false positives are increased to unacceptable levels when no corrections are applied. Our simulations also show that counter-measures like the Bonferroni correction keep false positives in check while reducing statistical power only moderately. Hence, there is little reason why such corrections should not be made a standard requirement. Further, we discuss three statistical illusions that can arise when statistical power is low, and we show how power can be improved to prevent these illusions. In sum, our work renders a detailed picture of the various types of statistical errors than can occur in studies of reading behavior and we provide concrete guidance about how these errors can be avoided. (C) 2016 Elsevier Inc. All rights reserved.
Recent research has shown that brain potentials time-locked to fixations in natural reading can be similar to brain potentials recorded during rapid serial visual presentation (RSVP). We attempted two replications of Hagoort, Hald, Bastiaansen, and Petersson [Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science, 304, 438-441, 2004] to determine whether this correspondence also holds for oscillatory brain responses. Hagoort et al. reported an N400 effect and synchronization in the theta and gamma range following world knowledge violations. Our first experiment (n = 32) used RSVP and replicated both the N400 effect in the ERPs and the power increase in the theta range in the time-frequency domain. In the second experiment (n = 49), participants read the same materials freely while their eye movements and their EEG were monitored. First fixation durations, gaze durations, and regression rates were increased, and the ERP showed an N400 effect. An analysis of time-frequency representations showed synchronization in the delta range (1-3 Hz) and desynchronization in the upper alpha range (11-13 Hz) but no theta or gamma effects. The results suggest that oscillatory EEG changes elicited by world knowledge violations are different in natural reading and RSVP. This may reflect differences in how representations are constructed and retrieved from memory in the two presentation modes.
In this paper we examine the effect of uncertainty on readers' predictions about meaning. In particular, we were interested in how uncertainty might influence the likelihood of committing to a specific sentence meaning. We conducted two event-related potential (ERP) experiments using particle verbs such as turn down and manipulated uncertainty by constraining the context such that readers could be either highly certain about the identity of a distant verb particle, such as turn the bed [...] down, or less certain due to competing particles, such as turn the music [...] up/down. The study was conducted in German, where verb particles appear clause-finally and may be separated from the verb by a large amount of material. We hypothesised that this separation would encourage readers to predict the particle, and that high certainty would make prediction of a specific particle more likely than lower certainty. If a specific particle was predicted, this would reflect a strong commitment to sentence meaning that should incur a higher processing cost if the prediction is wrong. If a specific particle was less likely to be predicted, commitment should be weaker and the processing cost of a wrong prediction lower. If true, this could suggest that uncertainty discourages predictions via an unacceptable cost-benefit ratio. However, given the clear predictions made by the literature, it was surprisingly unclear whether the uncertainty manipulation affected the two ERP components studied, the N400 and the PNP. Bayes factor analyses showed that evidence for our a priori hypothesised effect sizes was inconclusive, although there was decisive evidence against a priori hypothesised effect sizes larger than 1 mu Vfor the N400 and larger than 3 mu V for the PNP. We attribute the inconclusive finding to the properties of verb-particle dependencies that differ from the verb-noun dependencies in which the N400 and PNP are often studied.