### Refine

#### Year of publication

#### Document Type

- Preprint (88)
- Article (40)
- Monograph/Edited Volume (27)
- Review (1)

#### Language

- English (156)

#### Keywords

- index (9)
- manifolds with singularities (6)
- Fredholm property (5)
- Toeplitz operators (5)
- Cauchy problem (4)
- Hodge theory (4)
- Navier-Stokes equations (4)
- pseudodifferential operators (4)
- star product (4)
- 'eta' invariant (3)

In order to characterise the C*-algebra generated by the singular Bochner-Martinelli integral over a smooth closed hypersurfaces in Cn, we compute its principal symbol. We show then that the Szegö projection belongs to the strong closure of the algebra generated by the singular Bochner-Martinelli integral.

We prove that if u is a locally Lipschitz continuous function on an open set chi subset of Rn + 1 satisfying the nonlinear heat equation partial derivative(t)u = Delta(vertical bar u vertical bar(p-1) u), p > 1, weakly away from the zero set u(-1) (0) in chi, then u is a weak solution to this equation in all of chi.

We discuss the relaxation of a class of nonlinear elliptic Cauchy problems with data on a piece S of the boundary surface by means of a variational approach known in the optimal control literature as "equation error method". By the Cauchy problem is meant any boundary value problem for an unknown function y in a domain X with the property that the data on S, if combined with the differential equations in X, allow one to determine all derivatives of y on S by means of functional equations. In the case of real analytic data of the Cauchy problem, the existence of a local solution near S is guaranteed by the Cauchy-Kovalevskaya theorem. We also admit overdetermined elliptic systems, in which case the set of those Cauchy data on S for which the Cauchy problem is solvable is very "thin". For this reason we discuss a variational setting of the Cauchy problem which always possesses a generalised solution.

Let A be a nonlinear differential operator on an open set X in R^n and S a closed subset of X. Given a class F of functions in X, the set S is said to be removable for F relative to A if any weak solution of A (u) = 0 in the complement of S of class F satisfies this equation weakly in all of X. For the most extensively studied classes F we show conditions on S which guarantee that S is removable for F relative to A.

Let A be a nonlinear differential operator on an open set X subset of R-n and S a closed subset of X. Given a class F of functions in X, the set S is said to be removable for F relative to A if any weak solution of A(u) = 0 in XS of class F satisfies this equation weakly in all of X. For the most extensively studied classes F, we show conditions on S which guarantee that S is removable for F relative to A.

We consider the Navier-Stokes equations in the layer R^n x [0,T] over R^n with finite T > 0. Using the standard fundamental solutions of the Laplace operator and the heat operator, we reduce the Navier-Stokes equations to a nonlinear Fredholm equation of the form (I+K) u = f, where K is a compact continuous operator in anisotropic normed Hölder spaces weighted at the point at infinity with respect to the space variables. Actually, the weight function is included to provide a finite energy estimate for solutions to the Navier-Stokes equations for all t in [0,T]. On using the particular properties of the de Rham complex we conclude that the Fréchet derivative (I+K)' is continuously invertible at each point of the Banach space under consideration and the map I+K is open and injective in the space. In this way the Navier-Stokes equations prove to induce an open one-to-one mapping in the scale of Hölder spaces.