### Refine

#### Document Type

- Article (4)
- Preprint (4)
- Doctoral Thesis (1)

#### Language

- English (9)

#### Is part of the Bibliography

- yes (9)

#### Keywords

- reciprocal class (4)
- bridge (2)
- duality formula (2)
- random walk on Abelian group (2)
- random walks on graphs (2)
- reciprocal characteristics (2)
- stochastic bridge (2)
- Compound Poisson processes (1)
- Counting process (1)
- Irrfahrten auf Graphen (1)

#### Institute

Our first result concerns a characterization by means of a functional equation of Poisson point processes conditioned by the value of their first moment. It leads to a generalized version of Mecke’s formula. En passant, it also allows us to gain quantitative results about stochastic domination for Poisson point processes under linear constraints. Since bridges of a pure jump Lévy process in Rd with a height a can be interpreted as a Poisson point process on space–time conditioned by pinning its first moment to a, our approach allows us to characterize bridges of Lévy processes by means of a functional equation. The latter result has two direct applications: First, we obtain a constructive and simple way to sample Lévy bridge dynamics; second, it allows us to estimate the number of jumps for such bridges. We finally show that our method remains valid for linearly perturbed Lévy processes like periodic Ornstein–Uhlenbeck processes driven by Lévy noise.

In this thesis we study reciprocal classes of Markov chains. Given a continuous time Markov chain on a countable state space, acting as reference dynamics, the associated reciprocal class is the set of all probability measures on path space that can be written as a mixture of its bridges. These processes possess a conditional independence property that generalizes the Markov property, and evolved from an idea of Schrödinger, who wanted to obtain a probabilistic interpretation of quantum mechanics.
Associated to a reciprocal class is a set of reciprocal characteristics, which are space-time functions that determine the reciprocal class. We compute explicitly these characteristics, and divide them into two main families: arc characteristics and cycle characteristics. As a byproduct, we obtain an explicit criterion to check when two different Markov chains share their bridges.
Starting from the characteristics we offer two different descriptions of the reciprocal class, including its non-Markov probabilities.
The first one is based on a pathwise approach and the second one on short time asymptotic. With the first approach one produces a family of functional equations whose only solutions are precisely the elements of the reciprocal class. These equations are integration by parts on path space associated with derivative operators which perturb the paths by mean of the addition of random loops. Several geometrical tools are employed to construct such formulas. The problem of obtaining sharp characterizations is also considered, showing some interesting connections with discrete geometry. Examples of such formulas are given in the framework of counting processes and random walks on Abelian groups, where the set of loops has a group structure.
In addition to this global description, we propose a second approach by looking at the short time behavior of a reciprocal process. In the same way as the Markov property and short time expansions of transition probabilities characterize Markov chains, we show that a reciprocal class is characterized by imposing the reciprocal property and two families of short time expansions for the bridges. Such local approach is suitable to study reciprocal processes on general countable graphs. As application of our characterization, we considered several interesting graphs, such as lattices, planar
graphs, the complete graph, and the hypercube.
Finally, we obtain some first results about concentration of measure implied by lower bounds on the reciprocal characteristics.

Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of a continuous time random walk with values in a countable Abelian group, we compute explicitly its reciprocal characteristics and we present an integral characterization of it. Our main tool is a new iterated version of the celebrated Mecke's formula from the point process theory, which allows us to study, as transformation on the path space, the addition of random loops. Thanks to the lattice structure of the set of loops, we even obtain a sharp characterization. At the end, we discuss several examples to illustrate the richness of reciprocal classes. We observe how their structure depends on the algebraic properties of the underlying group.

In this work we study reciprocal classes of Markov walks on graphs. Given a continuous time reference Markov chain on a graph, its reciprocal class is the set of all probability measures which can be represented as a mixture of the bridges of the reference walks. We characterize reciprocal classes with two different approaches. With the first approach we found it as the set of solutions to duality formulae on path space, where the differential operators have the interpretation of the addition of infinitesimal random loops to the paths of the canonical process. With the second approach we look at short time asymptotics of bridges. Both approaches allow an explicit computation of reciprocal characteristics, which are divided into two families, the loop characteristics and the arc characteristics. They are those specific functionals of the generator of the reference chain which determine its reciprocal class. We look at the specific examples such as Cayley graphs, the hypercube and planar graphs. Finally we establish the first concentration of measure results for the bridges of a continuous time Markov chain based on the reciprocal characteristics.

Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set A in R^d. We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of A plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.

Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set . We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.