Refine
Year of publication
Document Type
- Article (56)
- Postprint (19)
- Report (7)
- Monograph/Edited Volume (3)
- Other (2)
- Preprint (2)
- Conference Proceeding (1)
- Habilitation Thesis (1)
- Review (1)
Keywords
- Germany (10)
- damage (9)
- preparedness (8)
- vulnerability (6)
- Klimaanpassung (4)
- Starkregen (4)
- Turkey (4)
- governance (4)
- insurance (4)
- mitigation (4)
Institute
Flood damage estimation is a core task in flood risk assessments and requires reliable flood loss models. Identifying the driving factors of flood loss at residential buildings and gaining insight into their relations is important to improve our understanding of flood damage processes. For that purpose, we learn probabilistic graphical models, which capture and illustrate (in-)dependencies between the considered variables. The models are learned based on postevent surveys with flood-affected residents after six flood events, which occurred in Germany between 2002 and 2013. Besides the sustained building damage, the survey data contain information about flooding parameters, early warning and emergency measures, property-level mitigation measures and preparedness, socioeconomic characteristics of the household, and building characteristics. The analysis considers the entire data set with a total of 4,468 cases as well as subsets of the data set partitioned into single flood events and flood types: river floods, levee breaches, surface water flooding, and groundwater floods, to reveal differences in the damaging processes. The learned networks suggest that the flood loss ratio of residential buildings is directly influenced by hydrological and hydraulic aspects as well as by building characteristics and property-level mitigation measures. The study demonstrates also that for different flood events and process types the building damage is influenced by varying factors. This suggests that flood damage models need to be capable of reproducing these differences for spatial and temporal model transfers.
Integrated flood management strategies consider property-level precautionary measures as a vital part. Whereas this is a well-researched topic for residents, little is known about the adaptive behaviour of flood-prone companies although they often settle on the ground floor of buildings and are thus among the first affected by flooding. This pilot study analyses flood responses of 64 businesses in a district of the city of Dresden, Germany that experienced major flooding in 2002 and 2013. Using standardised survey data and accompanying qualitative interviews, the analyses revealed that the largest driver of adaptive behaviour is experiencing flood events. Intangible factors such as tradition and a sense of community play a role for the decision to stay in the area, while lacking ownership might hamper property-level adaptation. Further research is also needed to understand the role of insurance and governmental aid for recovery and adaptation of businesses.
Flood loss data collection and modeling are not standardized, and previous work has indicated that losses from different flood types (e.g., riverine and groundwater) may follow different driving forces. However, different flood types may occur within a single flood event, which is known as a compound flood event. Therefore, we aimed to identify statistical similarities between loss-driving factors across flood types and test whether the corresponding losses should be modeled separately. In this study, we used empirical data from 4,418 respondents from four survey campaigns studying households in Germany that experienced flooding. These surveys sought to investigate several features of the impact process (hazard, socioeconomic, preparedness, and building characteristics, as well as flood type). While the level of most of these features differed across flood type subsamples (e.g., degree of preparedness), they did so in a nonregular pattern. A variable selection process indicates that besides hazard and building characteristics, information on property-level preparedness was also selected as a relevant predictor of the loss ratio. These variables represent information, which is rarely adopted in loss modeling. Models shall be refined with further data collection and other statistical methods. To save costs, data collection efforts should be steered toward the most relevant predictors to enhance data availability and increase the statistical power of results. Understanding that losses from different flood types are driven by different factors is a crucial step toward targeted data collection and model development and will finally clarify conditions that allow us to transfer loss models in space and time. <br /> Key Points <br /> Survey data of flood-affected households show different concurrent flood types, undermining the use of a single-flood-type loss model Thirteen variables addressing flood hazard, the building, and property level preparedness are significant predictors of the building loss ratio Flood type-specific models show varying significance across the predictor variables, indicating a hindrance to model transferability
Turkey has been severely affected by many natural hazards, in particular earthquakes and floods. Especially over the last two decades, these natural hazards have caused enormous human and economic damage. Although there is a large body of literature on earthquake hazards and risks in Turkey, comparatively little is known about flood hazards and risks. Therefore, this study aims to investigate the severity of flooding in comparison with other natural hazards in Turkey and to analyse the flood patterns by providing an overview of the temporal and spatial distribution of flood losses. These will act as a metric for the societal and economic impacts of flood hazards in Turkey. For this purpose, Turkey Disaster Database (TABB) was used for the years 1960-2014. As input for more detailed event analyses, the most severe flood events in Turkey for the same time interval will also be retrieved. Sufficiency of the TABB database to achieve the main aim of the study in terms of data quality and accuracy was also discussed. The TABB database was analysed and reviewed through comparison, mainly with the Emergency Events Database (EM-DAT), the Global Active Archive of Large Flood Events-Dartmouth Flood Observatory database, news archives and the scientific literature, with a focus on listing the most severe flood event. The comparative review of these data sources reveals big mismatches in the flood data, i.e. the reported number of events, number of affected people and economic loss all differ dramatically. Owing to the fact that the TABB is the only disaster loss database for Turkey, it is important to explore the reasons for the mismatches between TABB and the other sources with regard to aspects of accuracy and data quality. Therefore, biases and fallacies in the TABB loss data are also discussed. The comparative TABB database analyses show that large mismatches between global and national databases can occur. Current global and national databases for monitoring losses from national hazards suffer from a number of limitations, which in turn could lead to misinterpretations of the loss data. Since loss data collection is gaining more and more attention, e.g. in the Sendai Framework for Disaster Risk Reduction 2015-2030, this study offers a framework for developing guidelines for the Turkey Disaster Database (TABB), implications on how to standardize national loss databases and implement across the other hazard events in Turkey.
The most severe flood events in Turkey were determined for the period 1960-2014 by considering the number of fatalities, the number of affected people, and the total economic losses as indicators. The potential triggering mechanisms (i.e., atmospheric circulations and precipitation amounts) and aggravating pathways (i.e., topographic features, catchment size, land use types, and soil properties) of these 25 events were analyzed. On this basis, a new approach was developed to identify the main influencing factor per event and to provide additional information for determining the dominant flood occurrence pathways for severe floods. The events were then classified through hierarchical cluster analysis. As a result, six different clusters were found and characterized. Cluster 1 comprised flood events that were mainly influenced by drainage characteristics (e.g., catchment size and shape); Cluster 2 comprised events aggravated predominantly by urbanization; steep topography was identified to be the dominant factor for Cluster 3; extreme rainfall was determined as the main triggering factor for Cluster 4; saturated soil conditions were found to be the dominant factor for Cluster 5; and orographic effects of mountain ranges characterized Cluster 6. This study determined pathway patterns of the severe floods in Turkey with regard to their main causal or aggravating mechanisms. Accordingly, geomorphological properties are of major importance in large catchments in eastern and northeastern Anatolia. In addition, in small catchments, the share of urbanized area seems to be an important factor for the extent of flood impacts. This paper presents an outcome that could be used for future urban planning and flood risk prevention studies to understand the flood mechanisms in different regions of Turkey.
Models for the predictions of monetary losses from floods mainly blend data deemed to represent a single flood type and region. Moreover, these approaches largely ignore indicators of preparedness and how predictors may vary between regions and events, challenging the transferability of flood loss models. We use a flood loss database of 1812 German flood-affected households to explore how Bayesian multilevel models can estimate normalised flood damage stratified by event, region, or flood process type. Multilevel models acknowledge natural groups in the data and allow each group to learn from others. We obtain posterior estimates that differ between flood types, with credibly varying influences of water depth, contamination, duration, implementation of property-level precautionary measures, insurance, and previous flood experience; these influences overlap across most events or regions, however. We infer that the underlying damaging processes of distinct flood types deserve further attention. Each reported flood loss and affected region involved mixed flood types, likely explaining the uncertainty in the coefficients. Our results emphasise the need to consider flood types as an important step towards applying flood loss models elsewhere. We argue that failing to do so may unduly generalise the model and systematically bias loss estimations from empirical data.
Insights into the dynamics of human behavior in response to flooding are urgently needed for the development of effective integrated flood risk management strategies, and for integrating human behavior in flood risk modeling. However, our understanding of the dynamics of risk perceptions, attitudes, individual recovery processes, as well as adaptive (i.e., risk reducing) intention and behavior are currently limited because of the predominant use of cross-sectional surveys in the flood risk domain. Here, we present the results from one of the first panel surveys in the flood risk domain covering a relatively long period of time (i.e., four years after a damaging event), three survey waves, and a wide range of topics relevant to the role of citizens in integrated flood risk management. The panel data, consisting of 227 individuals affected by the 2013 flood in Germany, were analyzed using repeated-measures ANOVA and latent class growth analysis (LCGA) to utilize the unique temporal dimension of the data set. Results show that attitudes, such as the respondents' perceived responsibility within flood risk management, remain fairly stable over time. Changes are observed partly for risk perceptions and mainly for individual recovery and intentions to undertake risk-reducing measures. LCGA reveal heterogeneous recovery and adaptation trajectories that need to be taken into account in policies supporting individual recovery and stimulating societal preparedness. More panel studies in the flood risk domain are needed to gain better insights into the dynamics of individual recovery, risk-reducing behavior, and associated risk and protective factors.
Das Hochwasser im Juni 2013
(2015)