Refine
Year of publication
Document Type
- Article (56)
- Postprint (19)
- Report (7)
- Monograph/Edited Volume (3)
- Other (2)
- Preprint (2)
- Conference Proceeding (1)
- Habilitation Thesis (1)
- Review (1)
Keywords
- Germany (10)
- damage (9)
- preparedness (8)
- vulnerability (6)
- Klimaanpassung (4)
- Starkregen (4)
- Turkey (4)
- governance (4)
- insurance (4)
- mitigation (4)
Institute
Flood loss modeling is an important component within flood risk assessments. Traditionally, stage-damage functions are used for the estimation of direct monetary damage to buildings. Although it is known that such functions are governed by large uncertainties, they are commonly applied - even in different geographical regions - without further validation, mainly due to the lack of real damage data. Until now, little research has been done to investigate the applicability and transferability of such damage models to other regions. In this study, the last severe flood event in the Austrian Lech Valley in 2005 was simulated to test the performance of various damage functions from different geographical regions in Central Europe for the residential sector. In addition to common stage-damage curves, new functions were derived from empirical flood loss data collected in the aftermath of recent flood events in neighboring Germany. Furthermore, a multi-parameter flood loss model for the residential sector was adapted to the study area and also evaluated with official damage data. The analysis reveals that flood loss functions derived from related and more similar regions perform considerably better than those from more heterogeneous data sets of different regions and flood events. While former loss functions estimate the observed damage well, the latter overestimate the reported loss clearly. To illustrate the effect of model choice on the resulting uncertainty of damage estimates, the current flood risk for residential areas was calculated. In the case of extreme events like the 300 yr flood, for example, the range of losses to residential buildings between the highest and the lowest estimates amounts to a factor of 18, in contrast to properly validated models with a factor of 2.3. Even if the risk analysis is only performed for residential areas, our results reveal evidently that a carefree model transfer in other geographical regions might be critical. Therefore, we conclude that loss models should at least be selected or derived from related regions with similar flood and building characteristics, as far as no model validation is possible. To further increase the general reliability of flood loss assessment in the future, more loss data and more comprehensive loss data for model development and validation are needed.
Due to limited public budgets and the need to economize, the analysis of costs of hazard mitigation and emergency management of natural hazards becomes increasingly important for public natural hazard and risk management. In recent years there has been a growing body of literature on the estimation of losses which supported to help to determine benefits of measures in terms of prevented losses. On the contrary, the costs of mitigation are hardly addressed. This paper thus aims to shed some light on expenses for mitigation and emergency services. For this, we analysed the annual costs of mitigation efforts in four regions/countries of the Alpine Arc: Bavaria (Germany), Tyrol (Austria), South Tyrol (Italy) and Switzerland. On the basis of PPP values (purchasing power parities), annual expenses on public safety ranged from EUR 44 per capita in the Free State of Bavaria to EUR 216 in the Autonomous Province of South Tyrol. To analyse the (variable) costs for emergency services in case of an event, we used detailed data from the 2005 floods in the Federal State of Tyrol (Austria) as well as aggregated data from the 2002 floods in Germany. The analysis revealed that multi-hazards, the occurrence and intermixture of different natural hazard processes, contribute to increasing emergency costs. Based on these findings, research gaps and recommendations for costing Alpine natural hazards are discussed.
Flood risk is expected to increase in many regions of the world in the next decades with rising flood losses as a consequence. First and foremost, it can be attributed to the expansion of settlement and industrial areas into flood plains and the resulting accumulation of assets. For a future-oriented and a more robust flood risk management, it is therefore of importance not only to estimate potential impacts of climate change on the flood hazard, but also to analyze the spatio-temporal dynamics of flood exposure due to land use changes. In this study, carried out in the Alpine Lech Valley in Tyrol (Austria), various land use scenarios until 2030 were developed by means of a spatially explicit land use model, national spatial planning scenarios and current spatial policies. The combination of the simulated land use patterns with different inundation scenarios enabled us to derive statements about possible future changes in flood-exposed built-up areas. The results indicate that the potential assets at risk depend very much on the selected socioeconomic scenario. The important conditions affecting the potential assets at risk that differ between the scenarios are the demand for new built-up areas as well as on the types of conversions allowed to provide the necessary areas at certain locations. The range of potential changes in flood-exposed residential areas varies from no further change in the most moderate scenario 'Overall Risk' to 119 % increase in the most extreme scenario 'Overall Growth' (under current spatial policy) and 159 % increase when disregarding current building restrictions.
In the recent past, the Alpine Lech valley (Austria) experienced three damaging flood events within 6 years despite the various structural flood protection measures in place. For an improved flood risk management, the analysis of flood damage potentials is a crucial component. Since the expansion of built-up areas and their associated values is seen as one of the main drivers of rising flood losses, the goal of this study is to analyze the spatial development of the assets at risk, particularly of residential areas, due to land use changes over a historic period (since 1971) and up to possible shifts in future (until 2030). The analysis revealed that the alpine study area was faced to remarkable land use changes like urbanization and the decline of agriculturally used grassland areas. Although the major agglomeration of residential areas inside the flood plains took place before 1971, a steady growth of values at risk can still be observed until now. Even for the future, the trend is ongoing, but depends very much on the assumed land use scenario and the underlying land use policy. Between 1971 and 2006, the annual growth rate of the damage potential of residential areas amounted to 1.1 % ('constant values,' i.e., asset values at constant prices of reference year 2006) or 3.0 % ('adjusted values,' i.e., asset values adjusted by GDP increase at constant prices of reference year 2006) for three flood scenarios. For the projected time span between 2006 and 2030, a further annual increase by 1.0 % ('constant values') or even 4.2 % ('adjusted values') may be possible when the most extreme urbanization scenario 'Overall Growth' is considered. Although socio-economic development is regarded as the main driver for increasing flood losses, our analysis shows that settlement development does not preferably take place within flood prone areas.
The literature on the costing of mitigation measures for reducing impacts of natural hazards is rather fragmented. This paper provides a concise overview of the current state of knowledge in Europe on the costing of mitigation measures for the reduction of natural hazard risks (droughts, floods, storms and induced coastal hazards as well as alpine hazards) and identifies knowledge gaps and related research recommendations. Furthermore, it provides a taxonomy of related mitigation options, classifying them into nine categories: (1) management plans, land-use planning, and climate adaptation; (2) hazard modification; (3) infrastructure; (4) mitigation measures (stricto sensu); (5) communication in advance of events; (6) monitoring and early warning systems; (7) emergency response and evacuation; (8) financial incentives; and (9) risk transfer (including insurance). It is found that the costing of mitigation measures in European and in other countries has almost exclusively focused on estimating direct costs. A cost assessment framework that addresses a range of costs, possibly informed by multiple stakeholders, would provide more accurate estimates and could provide better guidance to decision makers. (C) 2014 American Society of Civil Engineers.
Flood risk analyses are often estimated assuming the same flood intensity along the river reach under study, i.e. discharges are calculated for a number of return periods T, e.g. 10 or 100 years, at several streamflow gauges. T-year discharges are regionalised and then transferred into T-year water levels, inundated areas and impacts. This approach assumes that (1) flood scenarios are homogeneous throughout a river basin, and (2) the T-year damage corresponds to the T-year discharge. Using a reach at the river Rhine, this homogeneous approach is compared with an approach that is based on four flood types with different spatial discharge patterns. For each type, a regression model was created and used in a Monte-Carlo framework to derive heterogeneous scenarios. Per scenario, four cumulative impact indicators were calculated: (1) the total inundated area, (2) the exposed settlement and industrial areas, (3) the exposed population and 4) the potential building loss. Their frequency curves were used to establish a ranking of eight past flood events according to their severity. The investigation revealed that the two assumptions of the homogeneous approach do not hold. It tends to overestimate event probabilities in large areas. Therefore, the generation of heterogeneous scenarios should receive more attention.
Costing natural hazards
(2014)
Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.