Refine
Document Type
- Article (13)
- Postprint (3)
- Doctoral Thesis (1)
- Report (1)
Is part of the Bibliography
- yes (18)
Keywords
- precipitation (3)
- Hangrutschungen (2)
- Sturzflut (2)
- classification (2)
- climate networks (2)
- events (2)
- flash flood (2)
- identifying influential nodes (2)
- landslides (2)
- rainfall (2)
The oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST and P at annual scale (8-16 months) concentrate mainly over the Pacific Ocean, while the corresponding spatial patterns progressively disappear when moving toward longer time-scales. Published under license by AIP Publishing.
In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson’s correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson’s correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales.
Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.
A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting.
Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.
Flash floods and debris flows are iconic hazards inmountainous regions with steep relief, high rainfall intensities, rapid snowmelt events, and abundant sediments. The cuesta landscapes of southern Germany hardly come to mind when dealing with such hazards. A series of heavy rainstorms dumping up to 140mm in 2 h caused destructive flash floods and debris flows in May 2016. The most severe damage occurred in the Braunsbach municipality, which was partly buried by 42,000 m(3) of boulders, gravel, mud, and anthropogenic debris from the small catchment of Orlacher Bach (similar to 6 km(2)). We analysed this event by combining rainfall patterns, geological conditions, and geomorphic impacts to estimate an average sediment yield of 14,000 t/km(2) that mostly (similar to 95%) came from some 50 riparian landslides and channel-bed incision of similar to 2 m. This specific sediment yield ranks among the top 20% globally, while the intensity-duration curve of the rainstormis similarly in the upper percentile range of storms that had triggered landslides. Compared to similar-sized catchments in the greater region hit by the rainstorms, we find that the Orlacher Bach is above the 95th percentile in terms of steepness, storm-rainfall intensity, and topographic curvatures. The flash flood transported a sediment volume equal to as much as 20-40% of the Pleistocene sediment volume stored in the Orlacher Bach fan, andmay have had several predecessors in the Holocene. River control structures from 1903 and records of a debris flow in the 1920s in a nearby catchment indicate that the local inhabitants may have been aware of the debris-flow hazards earlier. Such recurring and destructive events elude flood-hazard appraisals in humid landscapes of gentle relief, and broaden mechanistic views of how landslides and debris flows contribute to shaping small and deeply cut tributaries in the southern Germany cuesta landscape.
The flash-flood in Braunsbach in the north-eastern part of Baden-Wuerttemberg/Germany was a particularly strong and concise event which took place during the floods in southern Germany at the end of May/early June 2016. This article presents a detailed analysis of the hydro-meteorological forcing and the hydrological consequences of this event. A specific approach, the "forensic hydrological analysis" was followed in order to include and combine retrospectively a variety of data from different disciplines. Such an approach investigates the origins, mechanisms and course of such natural events if possible in a "near real time" mode, in order to follow the most recent traces of the event. The results show that it was a very rare rainfall event with extreme intensities which, in combination with catchment properties, led to extreme runoff plus severe geomorphological hazards, i.e. great debris flows, which together resulted in immense damage in this small rural town Braunsbach. It was definitely a record-breaking event and greatly exceeded existing design guidelines for extreme flood discharge for this region, i.e. by a factor of about 10. Being such a rare or even unique event, it is not reliably feasible to put it into a crisp probabilistic context. However, one can conclude that a return period clearly above 100 years can be assigned for all event components: rainfall, peak discharge and sediment transport. Due to the complex and interacting processes, no single flood cause or reason for the very high damage can be identified, since only the interplay and the cascading characteristics of those led to such an event. The roles of different human activities on the origin and/or intensification of such an extreme event are finally discussed. (C) 2018 Elsevier B.V. All rights reserved.
Quantifying the roles of single stations within homogeneous regions using complex network analysis
(2018)
Regionalization and pooling stations to form homogeneous regions or communities are essential for reliable parameter transfer, prediction in ungauged basins, and estimation of missing information. Over the years, several clustering methods have been proposed for regional analysis. Most of these methods are able to quantify the study region in terms of homogeneity but fail to provide microscopic information about the interaction between communities, as well as about each station within the communities. We propose a complex network-based approach to extract this valuable information and demonstrate the potential of our approach using a rainfall network constructed from the Indian gridded daily precipitation data. The communities were identified using the network-theoretical community detection algorithm for maximizing the modularity. Further, the grid points (nodes) were classified into universal roles according to their pattern of within- and between-community connections. The method thus yields zoomed-in details of individual rainfall grids within each community.
Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Nino 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2-8 years) and interdecadal (8-32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Nino 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region.
Am Abend des 29. Mai 2016 wurde der Ort Braunsbach im Landkreis Schwäbisch-Hall (Baden-Württemberg) von einer Sturzflut getroffen, bei der mehrere Häuser stark beschädigt oder zerstört wurden. Die Sturzflut war eine der Unwetterfolgen, die im Frühsommer 2016 vom Tiefdruckgebiet Elvira ausgelöst wurden. Der vorliegende Bericht ist der zweite Teil einer Doppelveröffentlichung, welche die Ergebnisse zur Untersuchung des Sturzflutereignisses im Rahmen des DFG-Graduiertenkollegs “Naturgefahren und Risiken in einer sich verändernden Welt” (NatRiskChange, GRK 2043/1) der Universität Potsdam präsentiert. Während Teil 1 die meteorologischen und hydrologischen Ereignisse analysiert, fokussiert Teil 2 auf die geomorphologischen Prozesse und die verursachten Gebäudeschäden. Dazu wurden Ursprung und Ausmaß des während des Sturzflutereignisses mobilisierten und in den Ort getragenen Materials untersucht. Des Weiteren wurden zu 96 betroffenen Gebäuden Daten zum Schadensgrad sowie Prozess- und Gebäudecharakteristika aufgenommen und ausgewertet. Die Untersuchungen zeigen, dass bei der Betrachtung von Hochwassergefährdung die Berücksichtigung von Sturzfluten und ihrer speziellen Charakteristika, wie hoher Feststofftransport und sprunghaftes Verhalten insbesondere in bebautem Gelände, wesentlich ist, um effektive Schutzmaßnahmen ergreifen zu können.