### Refine

#### Keywords

We study the anomalous diffusion of a particle in an external force field whose motion is governed by nonrenewal continuous time random walks with correlated waiting times. In this model the current waiting time T-i is equal to the previous waiting time Ti-1 plus a small increment. Based on the associated coupled Langevin equations the force field is systematically introduced. We show that in a confining potential the relaxation dynamics follows power-law or stretched exponential pattern, depending on the model parameters. The process obeys a generalized Einstein-Stokes-Smoluchowski relation and observes the second Einstein relation. The stationary solution is of Boltzmann-Gibbs form. The case of an harmonic potential is discussed in some detail. We also show that the process exhibits aging and ergodicity breaking.

In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations.