### Refine

#### Year of publication

#### Document Type

- Article (59)
- Preprint (17)
- Monograph/Edited Volume (9)
- Doctoral Thesis (1)
- Postprint (1)

#### Keywords

- MHD (1)
- Sun: atmosphere (1)
- Sun: magnetic topology (1)
- coronal mass ejections (1)
- flow (1)
- fluid shells (1)
- hopf-bifurcation (1)
- magnetic fields (1)
- magnetoconvection (1)
- magnetohydrodynamics (1)

We investigate numerically the appearance of heteroclinic behavior in a three-dimensional, buoyancy-driven fluid layer with stress-free top and bottom boundaries, a square horizontal periodicity with a small aspect ratio, and rotation at low to moderate rates about a vertical axis. The Prandtl number is 6.8. If the rotation is not too slow, the skewed-varicose instability leads from stationary rolls to a stationary mixed-mode solution, which in turn loses stability to a heteroclinic cycle formed by unstable roll states and connections between them. The unstable eigenvectors of these roll states are also of the skewed-varicose or mixed-mode type and in some parameter regions skewed-varicose like shearing oscillations as well as square patterns are involved in the cycle. Always present weak noise leads to irregular horizontal translations of the convection pattern and makes the dynamics chaotic, which is verified by calculating Lyapunov exponents. In the nonrotating case, the primary rolls lose, depending on the aspect ratio, stability to traveling waves or a stationary square pattern. We also study the symmetries of the solutions at the intermittent fixed points in the heteroclinic cycle.

The bifurcations in a three-dimensional incompressible, electrically conducting fluid with an external forcing of the Roberts type have been studied numerically. The corresponding flow can serve as a model for the convection in the outer core of the Earth and is realized in an ongoing laboratory experiment aimed at demonstrating a dynamo effect. The symmetry group of the problem has been determined and special attention has been paid to symmetry breaking by the bifurcations. The nonmagnetic, steady Roberts flow loses stability to a steady magnetic state, which in turn is subject to secondary bifurcations. The secondary solution branches have been traced until they end up in chaotic states.

The stability of the quiescent ground state of an incompressible, viscous and electrically conducting fluid sheet, bounded by stress-free parallel planes and driven by an external electric field tangential to the boundaries, is studied numerically. The electrical conductivity varies as cosh–2(x1/a), where x1 is the cross-sheet coordinate and a is the half width of a current layer centered about the midplane of the sheet. For a <~ 0.4L, where L is the distance between the boundary planes, the ground state is unstable to disturbances whose wavelengths parallel to the sheet lie between lower and upper bounds depending on the value of a and on the Hartmann number. Asymmetry of the configuration with respect to the midplane of the sheet, modelled by the addition of an externally imposed constant magnetic field to a symmetric equilibrium field, acts as a stabilizing factor.

Three-dimensional bouyancy-driven convection in a horizontal fluid layer with stress-free boundary conditions at the top and bottom and periodic boundary conditions in the horizontal directions is investigated by means of numerical simulation and bifurcation-analysis techniques. The aspect ratio is fixed to a value of 2√2 and the Prandtl number to a value of 6.8. Two-dimensional convection rolls are found to be stable up to a Rayleigh number of 17 950, where a Hopf bifurcation leads to traveling waves. These are stable up to a Rayleigh number of 30 000, where a secondary Hopf bifurcation generates modulated traveling waves. We pay particular attention to the symmetries of the solutions and symmetry breaking by the bifurcations.

The stability of the quiescent ground state of an incompressible viscous fluid sheet bounded by two parallel planes, with an electrical conductivity varying across the sheet, and driven by an external electric field tangential to the boundaries is considered. It is demonstrated that irrespective of the conductivity profile, as magnetic and kinetic Reynolds numbers (based on the Alfvén velocity) are raised from small values, two-dimensional perturbations become unstable first.

Two-dimensional bouyancy-driven convection in a horizontal fluid layer with stress-free boundary conditions at top and bottom and periodic boundary conditions in the horizontal direction is investigated by means of numerical simulation and bifurcation-analysis techniques. As the bouyancy forces increase, the primary stationary and symmetric convection rolls undergo successive Hopf bifurcations, bifurcations to traveling waves, and phase lockings. We pay attention to symmetry breaking and its connection with the generation of large-scale horizontal flows. Calculations of Lyapunov exponents indicate that at a Rayleigh number of 2.3×105 no temporal chaos is reached yet, but the system moves nonchaotically on a 4-torus in phase space.

We have studied the bifurcation structure of the incompressible two-dimensional Navier-Stokes equations with a special external forcing driving an array of 8×8 counterrotating vortices. The study has been motivated by recent experiments with thin layers of electrolytes showing, among other things, the formation of large-scale spatial patterns. As the strength of the forcing or the Reynolds number is raised the original stationary vortex array becomes unstable and a complex sequence of bifurcations is observed. The bifurcations lead to several periodic branches, torus and chaotic solutions, and other stationary solutions. Most remarkable is the appearance of solutions characterized by structures on spatial scales large compared to the scale of the forcing. We also characterize the different dynamic regimes by means of tracers injected into the fluid. Stretching rates and Hausdorff dimensions of convected line elements are calculated to quantify the mixing process. It turns out that for time-periodic velocity fields the mixing can be very effective.

We have studied the bifurcations in a three-dimensional incompressible magnetofluid with periodic boundary conditions and an external forcing of the Arnold-Beltrami-Childress (ABC) type. Bifurcation-analysis techniques have been applied to explore the qualitative behavior of solution branches. Due to the symmetry of the forcing, the equations are equivariant with respect to a group of transformations isomorphic to the octahedral group, and we have paid special attention to symmetry-breaking effects. As the Reynolds number is increased, the primary nonmagnetic steady state, the ABC flow, loses its stability to a periodic magnetic state, showing the appearance of a generic dynamo effect; the critical value of the Reynolds number for the instability of the ABC flow is decreased compared to the purely hydrodynamic case. The bifurcating magnetic branch in turn is subject to secondary, symmetry-breaking bifurcations. We have traced periodic and quasi- periodic branches until they end up in chaotic states. In particular detail we have analyzed the subgroup symmetries of the bifurcating periodic branches, which are closely related to the spatial structure of the magnetic field.

We have numerically studied the bifurcation properties of a sheet pinch with impenetrable stress-free boundaries. An incompressible, electrically conducting fluid with spatially and temporally uniform kinematic viscosity and magnetic diffusivity is confined between planes at x1=0 and 1. Periodic boundary conditions are assumed in the x2 and x3 directions and the magnetofluid is driven by an electric field in the x3 direction, prescribed on the boundary planes. There is a stationary basic state with the fluid at rest and a uniform current J=(0,0,J3). Surprisingly, this basic state proves to be stable and apparently to be the only time-asymptotic state, no matter how strong the applied electric field and irrespective of the other control parameters of the system, namely, the magnetic Prandtl number, the spatial periods L2 and L3 in the x2 and x3 directions, and the mean values B¯2 and B¯3 of the magnetic-field components in these directions.

The usage of nonlinear Galerkin methods for the numerical solution of partial differential equations is demonstrated by treating an example. We desribe the implementation of a nonlinear Galerkin method based on an approximate inertial manifold for the 3D magnetohydrodynamic equations and compare its efficiency with the linear Galerkin approximation. Special bifurcation points, time-averaged values of energy and enstrophy as well as Kaplan-Yorke dimensions are calculated for both schemes in order to estimate the number of modes necessary to correctly describe the behavior of the exact solutions.