### Refine

#### Year of publication

#### Document Type

- Article (150)
- Postprint (11)
- Monograph/Edited Volume (1)
- Conference Proceeding (1)

#### Keywords

#### Institute

Acyclicity constraints are prevalent in knowledge representation and applications where acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints related to recursive structures. In the technical results of the paper, we relate the new generalization with standard ASP by showing (i) how acyclicity extensions translate into normal rules, (ii) how weight constraint programs can be instrumented by acyclicity extensions to capture stability in analogy to unfounded set checking, and (iii) how the gap between supported and stable models is effectively closed in the presence of such an extension. Moreover, we present an efficient implementation of acyclicity constraints by incorporating a respective propagator into the state-of-the-art ASP solver CLASP. The implementation provides a unique combination of traditional unfounded set checking with acyclicity propagation. In the experimental part, we evaluate the interplay of these orthogonal checks by equipping logic programs with supplementary acyclicity constraints. The performance results show that native support for acyclicity constraints is a worthwhile addition, furnishing a complementary modeling construct in ASP itself as well as effective means for translation-based ASP solving.

aspeed
(2015)

Although Boolean Constraint Technology has made tremendous progress over the last decade, the efficacy of state-of-the-art solvers is known to vary considerably across different types of problem instances, and is known to depend strongly on algorithm parameters. This problem was addressed by means of a simple, yet effective approach using handmade, uniform, and unordered schedules of multiple solvers in ppfolio, which showed very impressive performance in the 2011 Satisfiability Testing (SAT) Competition. Inspired by this, we take advantage of the modeling and solving capacities of Answer Set Programming (ASP) to automatically determine more refined, that is, nonuniform and ordered solver schedules from the existing benchmarking data. We begin by formulating the determination of such schedules as multi-criteria optimization problems and provide corresponding ASP encodings. The resulting encodings are easily customizable for different settings, and the computation of optimum schedules can mostly be done in the blink of an eye, even when dealing with large runtime data sets stemming from many solvers on hundreds to thousands of instances. Also, the fact that our approach can be customized easily enabled us to swiftly adapt it to generate parallel schedules for multi-processor machines.

Abstract gringo
(2015)

This paper defines the syntax and semantics of the input language of the ASP grounder gringo. The definition covers several constructs that were not discussed in earlier work on the semantics of that language, including intervals, pools, division of integers, aggregates with non-numeric values, and lparse-style aggregate expressions. The definition is abstract in the sense that it disregards some details related to representing programs by strings of ASCII characters. It serves as a specification for gringo from Version 4.5 on.

The integration of preferences into answer set programming constitutes an important practical device for distinguishing certain preferred answer sets from non-preferred ones. To this end, we elaborate upon rule dependency graphs and their colorings for characterizing different preference handling strategies found in the literature. We start from a characterization of (three types of) preferred answer sets in terms of totally colored dependency graphs. In particular, we demonstrate that this approach allows us to capture all three approaches to preferences in a uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy. In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a (non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally colored one