### Refine

#### Year of publication

#### Document Type

- Article (14)
- Monograph/Edited Volume (1)

#### Keywords

- Ab-initio calculations (1)
- Base pairing (1)
- Equilibrium constants (1)
- Fluorescence spectroscopy (1)
- Gas chromatography (1)
- Ion mobility spectrometry (1)
- Laser ionization (1)
- Mass spectrometry (1)
- Naphthyridine receptor (1)
- Neuroleptics (1)

#### Institute

Standard quantum chemical methods are used for accurate calculation of thermochemical properties such as enthalpies of formation, entropies and Gibbs energies of formation. Equilibrium reactions are widely investigated and experimental measurements often lead to a range of reaction Gibbs energies and equilibrium constants. It is useful to calculate these equilibrium properties from quantum chemical methods in order to address the experimental differences. Furthermore, most standard calculation methods differ in accuracy and feasibility of the system size. Hence, asystematic comparison of equilibrium properties calculated with different numerical algorithms would provide a useful reference. We select two well-known gas phase equilibrium reactions with small molecules: covalent dimer formation of NO2 (2NO(2) reversible arrow N2O4) and the synthesis of NH3 (N-2 + 3 H-2 reversible arrow 2NH(3)). We test four quantum chemical methods denoted by G3B3, CBS-APNO, W1 and CCSD(T) with aug-cc-pVXZ basis sets (X = 2, 3, and 4), to obtain thermochemical data for NO2, N2O4, and NH3. The calculated standard formation Gibbs energies Delta(f)G degrees are used to calculate standard reaction Gibbs energies Delta(r)G degrees and standard equilibrium constants K-eq for the two reactions. Standard formation enthalpies Delta H-f degrees are calculated in a more reliable way using high-level methods such as W1 and CCSD(T). Standard entropies S degrees for the molecules are calculated well within the range of experiments for all methods, however, the values of standard formation Gibbs energies Delta(f)G degrees show some dependence on the choice of the method. High-level methods perform better for the calculation of molecular energies, however, simpler methods such as G3B3 and CBS-APNO perform quite well in the calculation of total reaction energies and equilibrium constants, provided that the chemical species involved do not exhibit molecular geometries that are difficult to handle by the applied method. The temperature dependence of standard reaction Gibbs energy Delta(r)G degrees for the NH3 reaction is discussed by using the calculated standard formation Gibbs energies Delta(f)G degrees of the reaction species at 298.15 K. The corresponding equilibrium constant K-eq as a function of temperature is found to be close to experimental values.

Site-selective emission spectra of Eu3+-doped CeO2 nanoparticles up to the D-5(0) - F-7(5) transition were recorded under cryogenic conditions to identify the local structure around the Eu3+ dopants in ceria. It is found that pretreatment conditions are crucial for the redistribution of dopants from a broad variety of environments to six well-defined lattice sites. The influence of the dopant and the host structure on the catalytic activity was investigated. A relationship between structure and reactivity is discussed. It is shown that oxygen transport is most efficient in particles with a pronounced amorphous character.

In this work, the photophysical properties of two oxazine dyes (ATTO 610 and ATTO 680) covalently attached via a C6-amino linker to the 5'-end of short single-stranded as well as double-stranded DNA (ssDNA and dsDNA, respectively) of different lengths were investigated. The two oxazine dyes were chosen because of the excellent spectral overlap, the high extinction coefficients, and the high fluorescence quantum yield of ATTO 610, making them an attractive Forster resonance energy transfer (FRET) pair for bioanalytical applications in the far-red spectral range. To identify possible molecular dye-DNA interactions that cause photophysical alterations, we performed a detailed spectroscopic study, including time-resolved fluorescence anisotropy and fluorescence correlation spectroscopy measurements. As an effect of the DNA conjugation, the absorption and fluorescence maxima of both dyes were bathochromically shifted and the fluorescence decay times were increased. Moreover, the absorption of conjugated ATTO 610 was spectrally broadened, and a dual fluorescence emission was observed. Steric interactions with ssDNA as well as dsDNA were found for both dyes. The dye-DNA interactions were strengthened from ssDNA to dsDNA conjugates, pointing toward interactions with specific dsDNA domains (such as the top of the double helix). Although these interactions partially blocked the dye-linker rotation, a free (unhindered) rotational mobility of at least one dye facilitated the appropriate alignment of the transition dipole moments in doubly labeled ATTO 610/ATTO 680-dsDNA conjugates for the performance of successful FRET. Considering the high linker flexibility for the determination of the donor-acceptor distances, good accordance between theoretical and experimental FRET parameters was obtained. The considerably large Forster distance of similar to 7 nm recommends the application of this FRET pair not only for the detection of binding reactions between nucleic acids in living cells but also for monitoring interactions of larger biomolecules such as proteins.

Novel fluorescent nanosensors, based on a naphthyridine receptor, have been developed for the detection of guanosine nucleotides, and both their sensitivity and selectivity to various nucleotides were evaluated. The nanosensors were constructed from polystyrene nanoparticles functionalized by (N-(7-((3-aminophenyl) ethynyl)-1,8-naphthyridin- 2-yl) acetamide) via carbodiimide ester activation. We show that this naphthyridine nanosensor binds guanosine nucleotides preferentially over adenine, cytosine, and thymidine nucleotides. Upon interaction with nucleotides, the fluorescence of the nanosensor is gradually quenched yielding Stern-Volmer constants in the range of 2.1 to 35.9mM(-1). For all the studied quenchers, limits of detection (LOD) and tolerance levels for the nanosensors were also determined. The lowest (3 sigma) LOD was found for guanosine 3',5'-cyclic monophosphate (cGMP) and it was as low as 150 ng/ml. In addition, we demonstrated that the spatial arrangement of bound analytes on the nanosensors' surfaces is what is responsible for their selectivity to different guanosine nucleotides. We found a correlation between the changes of the fluorescence signal and the number of phosphate groups of a nucleotide. Results of molecular modeling and zeta-potential measurements confirm that the arrangement of analytes on the surface provides for the selectivity of the nanosensors. These fluorescent nanosensors have the potential to be applied in multi-analyte, array-based detection platforms, as well as in multiplexed microfluidic systems.

The geometric structure and bonding properties of medium-sized ArnH+ clusters (n = 2-35), in which a proton is wrapped up in a number of Ar atoms, are investigated by applying a diatomics-in-molecules (DIM) model with ab-initio input data generated by means of multi-reference configuration-interaction (MRCI) computations. For the smaller complexes, n = 2-7, cross-checking calculations employing the coupled-cluster approach (CCSD) with the same one-electron atomic basis set as for the input data calculations (aug-cc-pVTZ from Dunning), show good agreement thus justifying the extension of the DIM study to larger n. Local minima of the multi-dimensional potential-energy surfaces (PES) are determined by combining a Monte-Carlo sampling followed, for each generated point, by a steepest-descent optimization procedure. For the electronic ground state of the ArnH+ clusters, the global minimum (corresponding to the most stable structure of the cluster) as well as secondary minima are found and analyzed. The structural and energetic data obtained reveal the building-up regularities for the most stable structures and make it possible to formulate a simple increment scheme. The low-lying excited states are also calculated by the DIM approach; they all turn out to be globally repulsive

Motivated by the possible importance of OBrO in atmospheric photochemistry, multireference configuration interaction calculations of the low-lying excited states were carried out to obtain information about the electronic vertical spectrum up to excitation energies of about 6 eV from the ground state, including the transition dipole moments, and about possible photodissociation pathways, based on one-dimensional cuts through the potential energy surfaces for dissociation into BrO + O and Br + O2, respectively. In addition, for probing the angle dependence the bending potentials were also calculated.

We report theoretical investigations on the second photoelectron band of chlorine dioxide molecule by ab initio quantum dynamical methods. This band exhibits a highly complex structure and represents a composite portrait of five excited energetically close-lying electronic states of ClO2+. Much of this complexity is likely to be arising due to strong vibronic interactions among these electronic states - which we address and examine herein. The near equilibrium MRCI potential energy surfaces (PESs) of these five cationic states reported by Peterson and Werner [J. Chem. Phys. 99 (1993) 302] for the C2v configuration, are extended for the Cs geometry assuming a harmonic vibration along the asymmetric stretching mode. The strength of the vibronic coupling parameters of the Hamiltonian are calculated by ab initio CASSCF-MRCI method and conical intersections of the PESs are established. The diabatic Hamiltonian matrix is constructed within a linear vibronic coupling scheme and the resulting PESs are employed in the nuclear dynamical simulations, carried out with the aid of a time-dependent wave packet approach. Companion calculations are performed for transitions to the uncoupled electronic states in order to reveal explicitly the impact of the nonadiabatic coupling on the photoelectron dynamics. The theoretical findings are in good accord with the experimental observations. The femtosecond nonradiative decay dynamics of ClO2+ excited electronic states mediated by conical intersections is also examined and discussed.

The electronic and geometric structure, stability and molecular properties of the cationic van-der-Waals complex Ar2H+ in its ground electronic state are studied by means of two ab-initio quantum-chemical approaches: conventional configuration interaction (multi-reference and coupled cluster methods) and a diatomics-in-molecules model with ab-initio input data.

Quasiclassical dynamics of proton scattering by N2 on an improved ab initio potential energy surface
(2001)

An improved analytical representation of the ground electronic potential energy surface (PES) of the (H+, N2) system is generated using the ab initio data reported in our earlier work. The new analytical PES function describes adequately the global behavior and in particular the angular dependence of the interaction as well as the long-range part so that it is amenable to scattering studies. We investigate the elastic and inelastic H+-N2 scattering dynamics on this PES by the quasiclassical trajectory method for center-of-mass collision energies in the range 29-144 eV. The trajectory results thus obtained are compared with the available experimental findings and with recent quantum-mechanical (vibrational close-coupling rotational infinite-order sudden) results. Despite some differences, the experimental data are well reproduced by the present calculations.