### Refine

#### Year of publication

- 2011 (5) (remove)

#### Keywords

- Data assimilation (1)
- Dynamical systems (1)
- Ensemble Kalman filter (1)
- Multigrid (1)
- Multiple time stepping (1)
- Nonlinear filters (1)
- Optimal transportation (1)
- Strike-slip fault model (1)

#### Institute

The adsorption of molecules to the surface of carbon nanostructures opens a new field of hybrid systems with distinct and controllable properties. We present a microscopic study of the optical absorption in carbon nanotubes functionalized with molecular spiropyran photoswitches. The switching process induces a change in the dipole moment leading to a significant coupling to the charge carriers in the nanotube. As a result, the absorption spectra of functionalized tubes reveal a considerable redshift of transition energies depending on the switching state of the spiropyran molecule. Our results suggest that carbon nanotubes are excellent substrates for the optical readout of spiropyran-based molecular switches. The gained insights can be applied to other noncovalently functionalized one-dimensional nanostructures in an externally induced dipole field.

We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.

Atomic oscillations present in classical molecular dynamics restrict the step size that can be used. Multiple time stepping schemes offer only modest improvements, and implicit integrators are costly and inaccurate. The best approach may be to actually remove the highest frequency oscillations by constraining bond lengths and bond angles, thus permitting perhaps a 4-fold increase in the step size. However, omitting degrees of freedom produces errors in statistical averages, and rigid angles do not bend for strong excluded volume forces. These difficulties can be addressed by an enhanced treatment of holonomic constrained dynamics using ideas from papers of Fixman (1974) and Reich (1995, 1999). In particular, the 1995 paper proposes the use of "flexible" constraints, and the 1999 paper uses a modified potential energy function with rigid constraints to emulate flexible constraints. Presented here is a more direct and rigorous derivation of the latter approach, together with justification for the use of constraints in molecular modeling. With rigor comes limitations, so practical compromises are proposed: simplifications of the equations and their judicious application when assumptions are violated. Included are suggestions for new approaches.

The problem of an ensemble Kalman filter when only partial observations are available is considered. In particular, the situation is investigated where the observational space consists of variables that are directly observable with known observational error, and of variables of which only their climatic variance and mean are given. To limit the variance of the latter poorly resolved variables a variance-limiting Kalman filter (VLKF) is derived in a variational setting. The VLKF for a simple linear toy model is analyzed and its range of optimal performance is determined. The VLKF is explored in an ensemble transform setting for the Lorenz-96 system, and it is shown that incorporating the information of the variance of some unobservable variables can improve the skill and also increase the stability of the data assimilation procedure.

We develop a multigrid, multiple time stepping scheme to reduce computational efforts for calculating complex stress interactions in a strike-slip 2D planar fault for the simulation of seismicity. The key elements of the multilevel solver are separation of length scale, grid-coarsening, and hierarchy. In this study the complex stress interactions are split into two parts: the first with a small contribution is computed on a coarse level, and the rest for strong interactions is on a fine level. This partition leads to a significant reduction of the number of computations. The reduction of complexity is even enhanced by combining the multigrid with multiple time stepping. Computational efficiency is enhanced by a factor of 10 while retaining a reasonable accuracy, compared to the original full matrix-vortex multiplication. The accuracy of solution and computational efficiency depend on a given cut-off radius that splits multiplications into the two parts. The multigrid scheme is constructed in such a way that it conserves stress in the entire half-space.