### Refine

#### Year of publication

#### Keywords

- anomalous diffusion (34)
- diffusion (12)
- living cells (9)
- stochastic processes (9)
- ageing (6)
- infection pathway (5)
- random-walks (5)
- single-particle tracking (5)
- dynamics (4)
- nonergodicity (4)

#### Institute

The role of ergodicity in anomalous stochastic processes - analysis of single-particle trajectories
(2012)

Single-particle experiments produce time series x(t) of individual particle trajectories, frequently revealing anomalous diffusion behaviour. Typically, individual x(t) are evaluated in terms of time-averaged quantities instead of ensemble averages. Here we discuss the behaviour of the time-averaged mean squared displacement of different stochastic processes giving rise to anomalous diffusion. In particular, we pay attention to the ergodic properties of these processes, i.e. the (non)equivalence of time and ensemble averages.

Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell periphery, occurrences of weak ergodicity breaking are observed, similar to the recent observations inside living fission yeast cells [1].

Macromolecular crowding in living biological cells effects subdiffusion of larger biomolecules such as proteins and enzymes. Mimicking this subdiffusion in terms of random walks on a critical percolation cluster, we here present a case study of EcoRV restriction enzymes involved in vital cellular defence. We show that due to its so far elusive propensity to an inactive state the enzyme avoids non-specific binding and remains well-distributed in the bulk cytoplasm of the cell. Despite the reduced volume exploration capability of subdiffusion processes, this mechanism guarantees a high efficiency of the enzyme. By variation of the non-specific binding constant and the bond occupation probability on the percolation network, we demonstrate that reduced nonspecific binding are beneficial for efficient subdiffusive enzyme activity even in relatively small bacteria cells. Our results corroborate a more local picture of cellular regulation.

Single-particle tracking has become a standard tool for the investigation of diffusive properties, especially in small systems such as biological cells. Usually the resulting time series are analyzed in terms of time averages over individual trajectories. Here we study confined normal as well as anomalous diffusion, modeled by fractional Brownian motion and the fractional Langevin equation, and show that even for such ergodic systems time-averaged quantities behave differently from their ensemble-averaged counterparts, irrespective of how long the measurement time becomes. Knowledge of the exact behavior of time averages is therefore fundamental for the proper physical interpretation of measured time series, in particular, for extraction of the relaxation time scale from data.

Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Peclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Peclet number. We investigate the effect of the chaperone size on the translocation process. In particular, for large chaperone size, the translocation progress and the mean waiting time as function of the reaction coordinate exhibit pronounced sawtooth-shapes. The effects of a heterogeneous polymer sequence on the translocation dynamics is studied in terms of the translocation velocity, the probability distribution for the translocation progress, and the monomer waiting times. (C) 2011 American Institute of Physics.

We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared displacements is observed. We also demonstrate a population splitting of the time averaged traces into fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the space coverage, the diffusive spreading of the probability density, as well as the survival probability.