### Refine

#### Year of publication

#### Keywords

- anomalous diffusion (34)
- diffusion (12)
- living cells (9)
- stochastic processes (9)
- ageing (6)
- infection pathway (5)
- random-walks (5)
- single-particle tracking (5)
- dynamics (4)
- nonergodicity (4)
- physiological consequences (4)
- superstatistics (4)
- transport (4)
- fractional dynamics (3)
- intracellular-transport (3)
- langevin equation (3)
- polymers (3)
- weak ergodicity breaking (3)
- Brownian yet non-Gaussian diffusion (2)
- Debye screening (2)
- Fokker-Planck equations (2)
- Langevin equation (2)
- Levy flights (2)
- Lévy flights (2)
- Lévy walks (2)
- Mittag-Leffler functions (2)
- adenoassociated virus (2)
- aspect ratio (2)
- autoregressive models (2)
- behavior (2)
- biological physics (2)
- brownian-motion (2)
- cambridge cb4 0wf (2)
- cambs (2)
- codifference (2)
- coefficient (2)
- coefficients (2)
- critical phenomena (2)
- cylindrical geometry (2)
- cytoplasm (2)
- diffusing diffusivity (2)
- dna coiling (2)
- dynamics simulation (2)
- electrostatic interactions (2)
- endosomal escape (2)
- england (2)
- equation approach (2)
- escherichia-coli (2)
- excluded volume (2)
- financial time series (2)
- first passage (2)
- first passage time (2)
- first-hitting time (2)
- first-passage time (2)
- flight search patterns (2)
- fluctuation-dissipation theorem (2)
- fluorescence photobleaching recovery (2)
- folding kinetics (2)
- fractional Brownian motion (2)
- fractional dynamics approach (2)
- gene regulatory networks (2)
- gene-regulation kinetics (2)
- generalised langevin equation (2)
- geometric Brownian motion (2)
- in-vitro (2)
- intermittent chaotic systems (2)
- levy flights (2)
- lipid bilayer membrane dynamics (2)
- membrane (2)
- membrane channel (2)
- milton rd (2)
- mixtures (2)
- models (2)
- monte-carlo (2)
- non-Gaussian diffusion (2)
- osmotic-pressure (2)
- photon-counting statistics (2)
- polyelectrolyte adsorption (2)
- posttranslational protein translocation (2)
- protein search (2)
- reflecting boundary conditions (2)
- royal soc chemistry (2)
- science park (2)
- single-stranded-dna (2)
- solid-state nanopores (2)
- spatial-organization (2)
- stochastic processes (theory) (2)
- stochastic time series (2)
- structured polynucleotides (2)
- subdiffusion (2)
- thomas graham house (2)
- time averaging (2)
- time random-walks (2)
- time series analysis (2)
- trafficking (2)
- truncated power-law correlated noise (2)
- Asymptotic expansions (1)
- Bulk-mediated diffusion (1)
- Bulk-mediated diffusion; (1)
- Composite fractional derivative (1)
- Fokker-Planck-Smoluchowski equation (1)
- Fox H-function (1)
- Fractional diffusion equation (1)
- Fractional moments (1)
- Grunwald-Letnikov approximation (1)
- Levy foraging hypothesis (1)
- Pareto analysis (1)
- Riesz-Feller fractional derivative (1)
- Sinai diffusion (1)
- Stochastic optimization (1)
- active transport (1)
- chemical relaxation (1)
- confinement (1)
- conformational properties (1)
- continuous time random walk (CTRW) (1)
- continuous time random walks (1)
- crowded fluids (1)
- crowding (1)
- dimerization kinetics (1)
- disordered media (1)
- driven diffusive systems (theory) (1)
- escence correlation spectroscopy (1)
- exact results (1)
- fluctuations (theory) (1)
- fluorescence correlation spectroscopy (1)
- fractional generalized Langevin equation (1)
- frictional memory kernel (1)
- gel network (1)
- inhomogeneous-media (1)
- mean square displacement (1)
- multi-scaling (1)
- path integration (1)
- polymer translocation (1)
- potential landscape (1)
- power spectral analysis (1)
- power spectral density (1)
- probability density function (1)
- probability distribution function (1)
- quenched energy landscape (1)
- random walks (1)
- reaction kinetics theory (1)
- reaction rate constants (1)
- scaled Brownian motion (1)
- search optimization (1)
- sensitivity analysis (1)
- single trajectory analysis (1)
- single-file diffusion (1)
- single-trajectory analysis (1)
- stochastic simulation algorithm (1)
- van Hove correlation (1)
- variances (1)

#### Institute

In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed.

Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion.

Anomalous diffusion is frequently described by scaled Brownian motion (SBM), a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is < x(2)(t) similar or equal to 2K(t)t with K(t) similar or equal to t(alpha-1) for 0 < alpha < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion, for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely, we demonstrate that under confinement, the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments, in particular, under confinement inside cellular compartments or when optical tweezers tracking methods are used.

Diffusion of finite-size particles in two-dimensional channels with random wall configurations
(2014)

Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick-Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda

We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared displacements is observed. We also demonstrate a population splitting of the time averaged traces into fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the space coverage, the diffusive spreading of the probability density, as well as the survival probability.

Brownianmotion is ergodic in the Boltzmann–Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann–
Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat—depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions—both a constant and a velocity-dependent (viscoelastic) restitution coefficient e. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of e on the impact velocity of particles.

Brownianmotion is ergodic in the Boltzmann–Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat—depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions—both a constant and a velocity-dependent
(viscoelastic) restitution coefficient e. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of e on the impact velocity of particles.

We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of
purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law BTh with h o 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.

We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of
purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law BT� h with h o 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.