### Refine

#### Year of publication

#### Keywords

- anomalous diffusion (36)
- diffusion (14)
- stochastic processes (10)
- living cells (9)
- ageing (6)
- infection pathway (5)
- random-walks (5)
- single-particle tracking (5)
- dynamics (4)
- nonergodicity (4)
- physiological consequences (4)
- superstatistics (4)
- transport (4)
- Debye screening (3)
- Levy flights (3)
- aspect ratio (3)
- critical phenomena (3)
- cylindrical geometry (3)
- electrostatic interactions (3)
- financial time series (3)
- first passage (3)
- first passage time (3)
- fluctuation-dissipation theorem (3)
- fractional dynamics (3)
- geometric Brownian motion (3)
- intracellular-transport (3)
- langevin equation (3)
- polyelectrolyte adsorption (3)
- polymers (3)
- protein search (3)
- time averaging (3)
- weak ergodicity breaking (3)
- Anomalous diffusion (2)
- Brownian motion (2)
- Brownian yet non-Gaussian diffusion (2)
- Fokker-Planck equations (2)
- Langevin equation (2)
- Lévy flights (2)
- Lévy walks (2)
- Mittag-Leffler functions (2)
- active transport (2)
- adenoassociated virus (2)
- autoregressive models (2)
- behavior (2)
- biological physics (2)
- brownian-motion (2)
- cambridge cb4 0wf (2)
- cambs (2)
- codifference (2)
- coefficient (2)
- coefficients (2)
- crowded fluids (2)
- cytoplasm (2)
- diffusing diffusivity (2)
- dna coiling (2)
- dynamics simulation (2)
- endosomal escape (2)
- england (2)
- equation approach (2)
- escherichia-coli (2)
- excluded volume (2)
- first-hitting time (2)
- first-passage time (2)
- first-passage time distribution (2)
- flight search patterns (2)
- fluorescence photobleaching recovery (2)
- folding kinetics (2)
- fractional Brownian motion (2)
- fractional dynamics approach (2)
- gene regulatory networks (2)
- gene-regulation kinetics (2)
- generalised langevin equation (2)
- in-vitro (2)
- intermittent chaotic systems (2)
- levy flights (2)
- lipid bilayer membrane dynamics (2)
- mean versus most probable reaction times (2)
- membrane (2)
- membrane channel (2)
- milton rd (2)
- mixed boundary conditions (2)
- mixtures (2)
- models (2)
- monte-carlo (2)
- narrow escape problem (2)
- non-Gaussian diffusion (2)
- osmotic-pressure (2)
- photon-counting statistics (2)
- posttranslational protein translocation (2)
- probability density function (2)
- reflecting boundary conditions (2)
- royal soc chemistry (2)
- science park (2)
- single-stranded-dna (2)
- solid-state nanopores (2)
- spatial-organization (2)
- stochastic processes (theory) (2)
- stochastic time series (2)
- structured polynucleotides (2)
- subdiffusion (2)
- thomas graham house (2)
- time random-walks (2)
- time series analysis (2)
- trafficking (2)
- truncated power-law correlated noise (2)
- Ageing (1)
- Asymptotic expansions (1)
- Bulk-mediated diffusion (1)
- Bulk-mediated diffusion; (1)
- Complete Bernstein function (1)
- Completely monotone function (1)
- Composite fractional derivative (1)
- Distributed order diffusion-wave equations (1)
- Fokker-Planck-Smoluchowski equation (1)
- Fox H-function (1)
- Fractional diffusion equation (1)
- Fractional moments (1)
- Grunwald-Letnikov approximation (1)
- Levy foraging hypothesis (1)
- Lipid bilayer (1)
- Non-Gaussian (1)
- Pareto analysis (1)
- Protein crowding (1)
- Riesz-Feller fractional derivative (1)
- Scher-Montroll transport (1)
- Simulations (1)
- Sinai diffusion (1)
- Stochastic modelling (1)
- Stochastic optimization (1)
- chemical relaxation (1)
- comb-like model (1)
- confinement (1)
- conformational properties (1)
- continuous time random walk (CTRW) (1)
- continuous time random walks (1)
- crowding (1)
- dimerization kinetics (1)
- disordered media (1)
- driven diffusive systems (theory) (1)
- escence correlation spectroscopy (1)
- exact results (1)
- first arrival (1)
- first passage process (1)
- fluctuations (theory) (1)
- fluorescence correlation spectroscopy (1)
- fractional generalized Langevin equation (1)
- frictional memory kernel (1)
- gel network (1)
- generalised Langevin equation (1)
- inhomogeneous-media (1)
- linear response theory (1)
- mean square displacement (1)
- mean squared displacement (1)
- multi-scaling (1)
- noise in biochemical signalling (1)
- path integration (1)
- polymer translocation (1)
- potential landscape (1)
- power spectral analysis (1)
- power spectral density (1)
- predator-prey model (1)
- probability distribution function (1)
- quenched energy landscape (1)
- random search process (1)
- random walks (1)
- reaction kinetics theory (1)
- reaction rate constants (1)
- recurrence (1)
- scaled Brownian motion (1)
- search optimization (1)
- sensitivity analysis (1)
- single trajectory analysis (1)
- single-file diffusion (1)
- single-trajectory analysis (1)
- stochastic simulation algorithm (1)
- van Hove correlation (1)
- variances (1)

#### Institute

Velocity and displacement correlation functions for fractional generalized Langevin equations
(2012)

We study analytically a generalized fractional Langevin equation. General formulas for calculation of variances and the mean square displacement are derived. Cases with a three parameter Mittag-Leffler frictional memory kernel are considered. Exact results in terms of the Mittag-Leffler type functions for the relaxation functions, average velocity and average particle displacement are obtained. The mean square displacement and variances are investigated analytically. Asymptotic behaviors of the particle in the short and long time limit are found. The model considered in this paper may be used for modeling anomalous diffusive processes in complex media including phenomena similar to single file diffusion or possible generalizations thereof. We show the importance of the initial conditions on the anomalous diffusive behavior of the particle.

Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E.coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.

Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E. coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.

When does a diffusing particle reach its target for the first time? This first-passage time (FPT) problem is central to the kinetics of molecular reactions in chemistry and molecular biology. Here, we explain the behavior of smooth FPT densities, for which all moments are finite, and demonstrate universal yet generally non-Poissonian long-time asymptotics for a broad variety of transport processes. While Poisson-like asymptotics arise generically in the presence of an effective repulsion in the immediate vicinity of the target, a time-scale separation between direct and reflected indirect trajectories gives rise to a universal proximity effect: Direct paths, heading more or less straight from the point of release to the target, become typical and focused, with a narrow spread of the corresponding first-passage times. Conversely, statistically dominant indirect paths exploring the entire system tend to be massively dissimilar. The initial distance to the target particularly impacts gene regulatory or competitive stochastic processes, for which few binding events often determine the regulatory outcome. The proximity effect is independent of details of the transport, highlighting the robust character of the FPT features uncovered here.

Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
(2016)

It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.

We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form D(t) similar or equal to 1/t. For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.

We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.

Stochastic processes driven by stationary fractional Gaussian noise, that is, fractional Brownian motion and fractional Langevin-equation motion, are usually considered to be ergodic in the sense that, after an algebraic relaxation, time and ensemble averages of physical observables coincide. Recently it was demonstrated that fractional Brownian motion and fractional Langevin-equation motion under external confinement are transiently nonergodic-time and ensemble averages behave differently-from the moment when the particle starts to sense the confinement. Here we show that these processes also exhibit transient aging, that is, physical observables such as the time-averaged mean-squared displacement depend on the time lag between the initiation of the system at time t = 0 and the start of the measurement at the aging time t(a). In particular, it turns out that for fractional Langevin-equation motion the aging dependence on ta is different between the cases of free and confined motion. We obtain explicit analytical expressions for the aged moments of the particle position as well as the time-averaged mean-squared displacement and present a numerical analysis of this transient aging phenomenon.

We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black–Scholes–Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.

We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.

The role of ergodicity in anomalous stochastic processes - analysis of single-particle trajectories
(2012)

Single-particle experiments produce time series x(t) of individual particle trajectories, frequently revealing anomalous diffusion behaviour. Typically, individual x(t) are evaluated in terms of time-averaged quantities instead of ensemble averages. Here we discuss the behaviour of the time-averaged mean squared displacement of different stochastic processes giving rise to anomalous diffusion. In particular, we pay attention to the ergodic properties of these processes, i.e. the (non)equivalence of time and ensemble averages.

This paper introduces and analyses a general statistical model, termed the RAndom RElaxations (RARE) model, of random relaxation processes in disordered systems. The model considers excitations that are randomly scattered around a reaction center in a general embedding space. The model's input quantities are the spatial scattering statistics of the excitations around the reaction center, and the chemical reaction rates between the excitations and the reaction center as a function of their mutual distance. The framework of the RARE model is versatile and a detailed stochastic analysis of the random relaxation processes is established. Analytic results regarding the duration and the range of the random relaxation processes, as well as the model's thermodynamic limit, are obtained in closed form. In particular, the case of power-law inputs, which turn out to yield stretched exponential relaxation patterns and asymptotically Paretian relaxation ranges, is addressed in detail.

Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.

Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.