### Refine

#### Has Fulltext

- yes (40) (remove)

#### Keywords

- anomalous diffusion (12)
- diffusion (5)
- living cells (5)
- infection pathway (3)
- nonergodicity (3)
- random-walks (3)
- single-particle tracking (3)
- dynamics (2)
- fractional dynamics (2)
- intracellular-transport (2)
- langevin equation (2)
- models (2)
- physiological consequences (2)
- stochastic processes (2)
- superstatistics (2)
- transport (2)
- Brownian yet non-Gaussian diffusion (1)
- Bulk-mediated diffusion; (1)
- Debye screening (1)
- Fokker-Planck equations (1)
- Langevin equation (1)
- Levy flights (1)
- Lévy flights (1)
- Lévy walks (1)
- Ornstein–Uhlenbeck process (1)
- adenoassociated virus (1)
- ageing (1)
- aspect ratio (1)
- autoregressive models (1)
- behavior (1)
- biological physics (1)
- brownian-motion (1)
- cambridge cb4 0wf (1)
- cambs (1)
- channel (1)
- codifference (1)
- coefficient (1)
- coefficients (1)
- critical phenomena (1)
- cylindrical geometry (1)
- cytoplasm (1)
- diffusing diffusivity (1)
- disordered media (1)
- dna coiling (1)
- dynamics simulation (1)
- electrostatic interactions (1)
- endosomal escape (1)
- england (1)
- ensemble and time averaged mean squared displacement (1)
- equation approach (1)
- escence correlation spectroscopy (1)
- escherichia-coli (1)
- exact results (1)
- excluded volume (1)
- financial time series (1)
- first passage time (1)
- first-hitting time (1)
- first-passage time (1)
- first-passage time distribution (1)
- flight search patterns (1)
- fluctuation-dissipation theorem (1)
- fluorescence photobleaching recovery (1)
- folding kinetics (1)
- fractional Brownian motion (1)
- fractional dynamics approach (1)
- gene regulatory networks (1)
- gene-regulation kinetics (1)
- generalised langevin equation (1)
- geometric Brownian motion (1)
- in-vitro (1)
- inhomogeneous-media (1)
- intermittent chaotic systems (1)
- levy flights (1)
- lipid bilayer membrane dynamics (1)
- mean versus most probable reaction times (1)
- mechanisms (1)
- membrane (1)
- membrane channel (1)
- milton rd (1)
- mixed boundary conditions (1)
- mixtures (1)
- monte-carlo (1)
- motion (1)
- narrow escape problem (1)
- non-Gaussian diffusion (1)
- osmotic-pressure (1)
- photon-counting statistics (1)
- plasma-membrane (1)
- polyelectrolyte adsorption (1)
- posttranslational protein translocation (1)
- power spectral density (1)
- power spectrum (1)
- probability density function (1)
- protein search (1)
- random diffusivity (1)
- reflecting boundary conditions (1)
- royal soc chemistry (1)
- science park (1)
- single trajectories (1)
- single-stranded-dna (1)
- single-trajectory analysis (1)
- solid-state nanopores (1)
- space-dependent diffusivity (1)
- spatial-organization (1)
- stationary stochastic process (1)
- stochastic time series (1)
- structured polynucleotides (1)
- subdiffusion (1)
- thomas graham house (1)
- time averaging (1)
- time random-walks (1)
- time series analysis (1)
- trafficking (1)
- truncated power-law correlated noise (1)
- weak ergodicity breaking (1)

#### Institute

Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades.

We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion.

Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion.

In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed.

Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called “autoinducers”) and themselves sense the autoinducer concentration in their vicinity. Once—due to increased local cell density inside a “cluster” of the growing colony—the concentration of autoinducers exceeds a threshold value, cells in this clusters get “induced” into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology.

We show that the codifference is a useful tool in studying the ergodicity breaking and non-Gaussianity properties of stochastic time series. While the codifference is a measure of dependence that was previously studied mainly in the context of stable processes, we here extend its range of applicability to random-parameter and diffusing-diffusivity models which are important in contemporary physics, biology and financial engineering. We prove that the codifference detects forms of dependence and ergodicity breaking which are not visible from analysing the covariance and correlation functions. We also discuss a related measure of dispersion, which is a nonlinear analogue of the mean squared displacement.

Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption–desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physico-chemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins.

We study the adsorption–desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition—demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces—are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye–Hückel approximation is often not feasible and the nonlinear Poisson–Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson–Boltzmann equation is smaller than the Debye–Hückel result, such that the required critical surface charge density for polyelectrolyte adsorption σc increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical–chemical and biophysical systems.

Abstract
The emerging diffusive dynamics in many complex systems show a characteristic crossover behaviour from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A prominent example for a subdiffusive–diffusive crossover are viscoelastic systems such as lipid bilayer membranes, while superdiffusive–diffusive crossovers occur in systems of actively moving biological cells. We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional Langevin equation motion. We derive explicit expressions for the mean squared displacement and correlation functions, including different shapes of the crossover behaviour depending on the concrete tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a direct application of our model we demonstrate that the obtained dynamics quantitatively describes the subdiffusion–diffusion and subdiffusion–subdiffusion crossover in lipid bilayer systems. We also show that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling.

Diffusion of finite-size particles in two-dimensional channels with random wall configurations
(2014)

Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick–Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107].