### Refine

#### Year of publication

#### Keywords

- anomalous diffusion (36)
- diffusion (14)
- stochastic processes (10)
- living cells (9)
- ageing (6)
- infection pathway (5)
- random-walks (5)
- single-particle tracking (5)
- dynamics (4)
- nonergodicity (4)
- physiological consequences (4)
- superstatistics (4)
- transport (4)
- Debye screening (3)
- Levy flights (3)
- aspect ratio (3)
- critical phenomena (3)
- cylindrical geometry (3)
- electrostatic interactions (3)
- financial time series (3)
- first passage (3)
- first passage time (3)
- fluctuation-dissipation theorem (3)
- fractional dynamics (3)
- geometric Brownian motion (3)
- intracellular-transport (3)
- langevin equation (3)
- polyelectrolyte adsorption (3)
- polymers (3)
- protein search (3)
- time averaging (3)
- weak ergodicity breaking (3)
- Anomalous diffusion (2)
- Brownian motion (2)
- Brownian yet non-Gaussian diffusion (2)
- Fokker-Planck equations (2)
- Langevin equation (2)
- Lévy flights (2)
- Lévy walks (2)
- Mittag-Leffler functions (2)
- active transport (2)
- adenoassociated virus (2)
- autoregressive models (2)
- behavior (2)
- biological physics (2)
- brownian-motion (2)
- cambridge cb4 0wf (2)
- cambs (2)
- codifference (2)
- coefficient (2)
- coefficients (2)
- crowded fluids (2)
- cytoplasm (2)
- diffusing diffusivity (2)
- dna coiling (2)
- dynamics simulation (2)
- endosomal escape (2)
- england (2)
- equation approach (2)
- escherichia-coli (2)
- excluded volume (2)
- first-hitting time (2)
- first-passage time (2)
- first-passage time distribution (2)
- flight search patterns (2)
- fluorescence photobleaching recovery (2)
- folding kinetics (2)
- fractional Brownian motion (2)
- fractional dynamics approach (2)
- gene regulatory networks (2)
- gene-regulation kinetics (2)
- generalised langevin equation (2)
- in-vitro (2)
- intermittent chaotic systems (2)
- levy flights (2)
- lipid bilayer membrane dynamics (2)
- mean versus most probable reaction times (2)
- membrane (2)
- membrane channel (2)
- milton rd (2)
- mixed boundary conditions (2)
- mixtures (2)
- models (2)
- monte-carlo (2)
- narrow escape problem (2)
- non-Gaussian diffusion (2)
- osmotic-pressure (2)
- photon-counting statistics (2)
- posttranslational protein translocation (2)
- probability density function (2)
- reflecting boundary conditions (2)
- royal soc chemistry (2)
- science park (2)
- single-stranded-dna (2)
- solid-state nanopores (2)
- spatial-organization (2)
- stochastic processes (theory) (2)
- stochastic time series (2)
- structured polynucleotides (2)
- subdiffusion (2)
- thomas graham house (2)
- time random-walks (2)
- time series analysis (2)
- trafficking (2)
- truncated power-law correlated noise (2)
- Ageing (1)
- Asymptotic expansions (1)
- Bulk-mediated diffusion (1)
- Bulk-mediated diffusion; (1)
- Complete Bernstein function (1)
- Completely monotone function (1)
- Composite fractional derivative (1)
- Distributed order diffusion-wave equations (1)
- Fokker-Planck-Smoluchowski equation (1)
- Fox H-function (1)
- Fractional diffusion equation (1)
- Fractional moments (1)
- Grunwald-Letnikov approximation (1)
- Levy foraging hypothesis (1)
- Lipid bilayer (1)
- Non-Gaussian (1)
- Pareto analysis (1)
- Protein crowding (1)
- Riesz-Feller fractional derivative (1)
- Scher-Montroll transport (1)
- Simulations (1)
- Sinai diffusion (1)
- Stochastic modelling (1)
- Stochastic optimization (1)
- chemical relaxation (1)
- comb-like model (1)
- confinement (1)
- conformational properties (1)
- continuous time random walk (CTRW) (1)
- continuous time random walks (1)
- crowding (1)
- dimerization kinetics (1)
- disordered media (1)
- driven diffusive systems (theory) (1)
- escence correlation spectroscopy (1)
- exact results (1)
- first arrival (1)
- first passage process (1)
- fluctuations (theory) (1)
- fluorescence correlation spectroscopy (1)
- fractional generalized Langevin equation (1)
- frictional memory kernel (1)
- gel network (1)
- generalised Langevin equation (1)
- inhomogeneous-media (1)
- linear response theory (1)
- mean square displacement (1)
- mean squared displacement (1)
- multi-scaling (1)
- noise in biochemical signalling (1)
- path integration (1)
- polymer translocation (1)
- potential landscape (1)
- power spectral analysis (1)
- power spectral density (1)
- predator-prey model (1)
- probability distribution function (1)
- quenched energy landscape (1)
- random search process (1)
- random walks (1)
- reaction kinetics theory (1)
- reaction rate constants (1)
- recurrence (1)
- scaled Brownian motion (1)
- search optimization (1)
- sensitivity analysis (1)
- single trajectory analysis (1)
- single-file diffusion (1)
- single-trajectory analysis (1)
- stochastic simulation algorithm (1)
- van Hove correlation (1)
- variances (1)

#### Institute

Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades.

A single predator charging a herd of prey: effects of self volume and predator-prey decision-making
(2016)

We study the degree of success of a single predator hunting a herd of prey on a two-dimensional square lattice landscape. We explicitly consider the self volume of the prey restraining their dynamics on the lattice. The movement of both predator and prey is chosen to include an intelligent, decision making step based on their respective sighting ranges, the radius in which they can detect the other species (prey cannot recognise each other besides the self volume interaction): after spotting each other the motion of prey and predator turns from a nearest neighbour random walk into directed escape or chase, respectively. We consider a large range of prey densities and sighting ranges and compute the mean first passage time for a predator to catch a prey as well as characterise the effective dynamics of the hunted prey. We find that the prey's sighting range dominates their life expectancy and the predator profits more from a bad eyesight of the prey than from his own good eye sight. We characterise the dynamics in terms of the mean distance between the predator and the nearest prey. It turns out that effectively the dynamics of this distance coordinate can be captured in terms of a simple Ornstein–Uhlenbeck picture. Reducing the many-body problem to a simple two-body problem by imagining predator and nearest prey to be connected by an effective Hookean bond, all features of the model such as prey density and sighting ranges merge into the effective binding constant.

Macromolecular crowding in living biological cells effects subdiffusion of larger biomolecules such as proteins and enzymes. Mimicking this subdiffusion in terms of random walks on a critical percolation cluster, we here present a case study of EcoRV restriction enzymes involved in vital cellular defence. We show that due to its so far elusive propensity to an inactive state the enzyme avoids non-specific binding and remains well-distributed in the bulk cytoplasm of the cell. Despite the reduced volume exploration capability of subdiffusion processes, this mechanism guarantees a high efficiency of the enzyme. By variation of the non-specific binding constant and the bond occupation probability on the percolation network, we demonstrate that reduced nonspecific binding are beneficial for efficient subdiffusive enzyme activity even in relatively small bacteria cells. Our results corroborate a more local picture of cellular regulation.

Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

We study the effects of ageing-the time delay between initiation of the physical process at t = 0 and start of observation at some time t(a) > 0-and spatial confinement on the properties of heterogeneous diffusion processes (HDPs) with deterministic power-law space-dependent diffusivities, D(x) = D-0 vertical bar x vertical bar(alpha). From analysis of the ensemble and time averaged mean squared displacements and the ergodicity breaking parameter quantifying the inherent degree of irreproducibility of individual realizations of the HDP we obtain striking similarities to ageing subdiffusive continuous time random walks with scale-free waiting time distributions. We also explore how both processes can be distinguished. For confined HDPs we study the long-time saturation of the ensemble and time averaged particle displacements as well as the magnitude of the inherent scatter of time averaged displacements and contrast the outcomes to the results known for other anomalous diffusion processes under confinement.

In ageing systems physical observables explicitly depend on the time span elapsing between the original initiation of the system and the actual start of the recording of the particle motion. We here study the signatures of ageing in the framework of ultraslow continuous time random walk processes with super-heavy tailed waiting time densities. We derive the density for the forward or recurrent waiting time of the motion as function of the ageing time, generalise the Montroll-Weiss equation for this process, and analyse the ageing behaviour of the ensemble and time averaged mean squared displacements.

Ageing first passage time density in continuous time random walks and quenched energy landscapes
(2015)

We study the first passage dynamics of an ageing stochastic process in the continuous time random walk (CTRW) framework. In such CTRW processes the test particle performs a random walk, in which successive steps are separated by random waiting times distributed in terms of the waiting time probability density function Psi (t) similar or equal to t(-1-alpha) (0 <= alpha <= 2). An ageing stochastic process is defined by the explicit dependence of its dynamic quantities on the ageing time t(a), the time elapsed between its preparation and the start of the observation. Subdiffusive ageing CTRWs with 0 < alpha < 1 describe systems such as charge carriers in amorphous semiconducters, tracer dispersion in geological and biological systems, or the dynamics of blinking quantum dots. We derive the exact forms of the first passage time density for an ageing subdiffusive CTRW in the semi-infinite, confined, and biased case, finding different scaling regimes for weakly, intermediately, and strongly aged systems: these regimes, with different scaling laws, are also found when the scaling exponent is in the range 1 < alpha < 2, for sufficiently long ta. We compare our results with the ageing motion of a test particle in a quenched energy landscape. We test our theoretical results in the quenched landscape against simulations: only when the bias is strong enough, the correlations from returning to previously visited sites become insignificant and the results approach the ageing CTRW results. With small bias or without bias, the ageing effects disappear and a change in the exponent compared to the case of a completely annealed landscape can be found, reflecting the build-up of correlations in the quenched landscape.

We study the properties of ageing Scher-Montroll transport in terms of a biased subdiffusive continuous time random walk in which the waiting times between consecutive jumps of the charge carriers are distributed according to the power law probability with . As we show, the dynamical properties of the Scher-Montroll transport depend on the ageing time span between the initial preparation of the system and the start of the observation. The Scher-Montroll transport theory was originally shown to describe the photocurrent in amorphous solids in the presence of an external electric field, but it has since been used in many other fields of physical sciences, in particular also in the geophysical context for the description of the transport of tracer particles in subsurface aquifers. In the absence of ageing () the photocurrent of the classical Scher-Montroll model or the breakthrough curves in the groundwater context exhibit a crossover between two power law regimes in time with the scaling exponents and . In the presence of ageing a new power law regime and an initial plateau regime of the current emerge. We derive the different power law regimes and crossover times of the ageing Scher-Montroll transport and show excellent agreement with simulations of the process. Experimental data of ageing Scher-Montroll transport in polymeric semiconductors are shown to agree well with the predictions of our theory.