### Refine

#### Year of publication

#### Keywords

- anomalous diffusion (36)
- diffusion (14)
- stochastic processes (10)
- living cells (9)
- ageing (6)
- infection pathway (5)
- random-walks (5)
- single-particle tracking (5)
- dynamics (4)
- nonergodicity (4)
- physiological consequences (4)
- superstatistics (4)
- transport (4)
- Debye screening (3)
- Levy flights (3)
- aspect ratio (3)
- critical phenomena (3)
- cylindrical geometry (3)
- electrostatic interactions (3)
- financial time series (3)
- first passage (3)
- first passage time (3)
- fluctuation-dissipation theorem (3)
- fractional dynamics (3)
- geometric Brownian motion (3)
- intracellular-transport (3)
- langevin equation (3)
- polyelectrolyte adsorption (3)
- polymers (3)
- protein search (3)
- time averaging (3)
- weak ergodicity breaking (3)
- Anomalous diffusion (2)
- Brownian motion (2)
- Brownian yet non-Gaussian diffusion (2)
- Fokker-Planck equations (2)
- Langevin equation (2)
- Lévy flights (2)
- Lévy walks (2)
- Mittag-Leffler functions (2)
- active transport (2)
- adenoassociated virus (2)
- autoregressive models (2)
- behavior (2)
- biological physics (2)
- brownian-motion (2)
- cambridge cb4 0wf (2)
- cambs (2)
- codifference (2)
- coefficient (2)
- coefficients (2)
- crowded fluids (2)
- cytoplasm (2)
- diffusing diffusivity (2)
- dna coiling (2)
- dynamics simulation (2)
- endosomal escape (2)
- england (2)
- equation approach (2)
- escherichia-coli (2)
- excluded volume (2)
- first-hitting time (2)
- first-passage time (2)
- first-passage time distribution (2)
- flight search patterns (2)
- fluorescence photobleaching recovery (2)
- folding kinetics (2)
- fractional Brownian motion (2)
- fractional dynamics approach (2)
- gene regulatory networks (2)
- gene-regulation kinetics (2)
- generalised langevin equation (2)
- in-vitro (2)
- intermittent chaotic systems (2)
- levy flights (2)
- lipid bilayer membrane dynamics (2)
- mean versus most probable reaction times (2)
- membrane (2)
- membrane channel (2)
- milton rd (2)
- mixed boundary conditions (2)
- mixtures (2)
- models (2)
- monte-carlo (2)
- narrow escape problem (2)
- non-Gaussian diffusion (2)
- osmotic-pressure (2)
- photon-counting statistics (2)
- posttranslational protein translocation (2)
- probability density function (2)
- reflecting boundary conditions (2)
- royal soc chemistry (2)
- science park (2)
- single-stranded-dna (2)
- solid-state nanopores (2)
- spatial-organization (2)
- stochastic processes (theory) (2)
- stochastic time series (2)
- structured polynucleotides (2)
- subdiffusion (2)
- thomas graham house (2)
- time random-walks (2)
- time series analysis (2)
- trafficking (2)
- truncated power-law correlated noise (2)
- Ageing (1)
- Asymptotic expansions (1)
- Bulk-mediated diffusion (1)
- Bulk-mediated diffusion; (1)
- Complete Bernstein function (1)
- Completely monotone function (1)
- Composite fractional derivative (1)
- Distributed order diffusion-wave equations (1)
- Fokker-Planck-Smoluchowski equation (1)
- Fox H-function (1)
- Fractional diffusion equation (1)
- Fractional moments (1)
- Grunwald-Letnikov approximation (1)
- Levy foraging hypothesis (1)
- Lipid bilayer (1)
- Non-Gaussian (1)
- Pareto analysis (1)
- Protein crowding (1)
- Riesz-Feller fractional derivative (1)
- Scher-Montroll transport (1)
- Simulations (1)
- Sinai diffusion (1)
- Stochastic modelling (1)
- Stochastic optimization (1)
- chemical relaxation (1)
- comb-like model (1)
- confinement (1)
- conformational properties (1)
- continuous time random walk (CTRW) (1)
- continuous time random walks (1)
- crowding (1)
- dimerization kinetics (1)
- disordered media (1)
- driven diffusive systems (theory) (1)
- escence correlation spectroscopy (1)
- exact results (1)
- first arrival (1)
- first passage process (1)
- fluctuations (theory) (1)
- fluorescence correlation spectroscopy (1)
- fractional generalized Langevin equation (1)
- frictional memory kernel (1)
- gel network (1)
- generalised Langevin equation (1)
- inhomogeneous-media (1)
- linear response theory (1)
- mean square displacement (1)
- mean squared displacement (1)
- multi-scaling (1)
- noise in biochemical signalling (1)
- path integration (1)
- polymer translocation (1)
- potential landscape (1)
- power spectral analysis (1)
- power spectral density (1)
- predator-prey model (1)
- probability distribution function (1)
- quenched energy landscape (1)
- random search process (1)
- random walks (1)
- reaction kinetics theory (1)
- reaction rate constants (1)
- recurrence (1)
- scaled Brownian motion (1)
- search optimization (1)
- sensitivity analysis (1)
- single trajectory analysis (1)
- single-file diffusion (1)
- single-trajectory analysis (1)
- stochastic simulation algorithm (1)
- van Hove correlation (1)
- variances (1)

#### Institute

We employ Bayesian statistics using the nested-sampling algorithm to compare and rank multiple models of ergodic diffusion (including anomalous diffusion) as well as to assess their optimal parameters for in silico-generated and real time-series. We focus on the recently-introduced model of Brownian motion with "diffusing diffusivity'-giving rise to widely-observed non-Gaussian displacement statistics-and its comparison to Brownian and fractional Brownian motion, also for the time-series with some measurement noise. We conduct this model-assessment analysis using Bayesian statistics and the nested-sampling algorithm on the level of individual particle trajectories. We evaluate relative model probabilities and compute best-parameter sets for each diffusion model, comparing the estimated parameters to the true ones. We test the performance of the nested-sampling algorithm and its predictive power both for computer-generated (idealised) trajectories as well as for real single-particle-tracking trajectories. Our approach delivers new important insight into the objective selection of the most suitable stochastic model for a given time-series. We also present first model-ranking results in application to experimental data of tracer diffusion in polymer-based hydrogels.

We show that the codifference is a useful tool in studying the ergodicity breaking and non-Gaussianity properties of stochastic time series. While the codifference is a measure of dependence that was previously studied mainly in the context of stable processes, we here extend its range of applicability to random-parameter and diffusing-diffusivity models which are important in contemporary physics, biology and financial engineering. We prove that the codifference detects forms of dependence and ergodicity breaking which are not visible from analysing the covariance and correlation functions. We also discuss a related measure of dispersion, which is a nonlinear analogue of the mean squared displacement.

Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E.coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.

In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed.

A considerable number of systems have recently been reported in which
Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential(Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.

Abstract
The emerging diffusive dynamics in many complex systems show a characteristic crossover behaviour from anomalous to normal diffusion which is otherwise fitted by two independent power-laws. A prominent example for a subdiffusive–diffusive crossover are viscoelastic systems such as lipid bilayer membranes, while superdiffusive–diffusive crossovers occur in systems of actively moving biological cells. We here consider the general dynamics of a stochastic particle driven by so-called tempered fractional Gaussian noise, that is noise with Gaussian amplitude and power-law correlations, which are cut off at some mesoscopic time scale. Concretely we consider such noise with built-in exponential or power-law tempering, driving an overdamped Langevin equation (fractional Brownian motion) and fractional Langevin equation motion. We derive explicit expressions for the mean squared displacement and correlation functions, including different shapes of the crossover behaviour depending on the concrete tempering, and discuss the physical meaning of the tempering. In the case of power-law tempering we also find a crossover behaviour from faster to slower superdiffusion and slower to faster subdiffusion. As a direct application of our model we demonstrate that the obtained dynamics quantitatively describes the subdiffusion–diffusion and subdiffusion–subdiffusion crossover in lipid bilayer systems. We also show that a model of tempered fractional Brownian motion recently proposed by Sabzikar and Meerschaert leads to physically very different behaviour with a seemingly paradoxical ballistic long time scaling.

It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.

Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes.

We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.

We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law similar to T-h with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.