### Refine

#### Language

- English (10)

#### Is part of the Bibliography

- yes (10)

#### Keywords

- first-hitting time (3)
- first-passage time (3)
- Levy flights (2)
- Lévy flights (2)
- Lévy walks (2)
- biological physics (2)
- gene regulatory networks (2)
- Bulk-mediated diffusion; (1)
- Levy walks (1)
- ageing (1)

For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms.

Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.

Low-dimensional, many-body systems are often characterized by ultraslow dynamics. We study a labelled particle in a generic system of identical particles with hard-core interactions in a strongly disordered environment. The disorder is manifested through intermittent motion with scale-free sticking times at the single particle level. While for a non-interacting particle we find anomalous diffusion of the power-law form < x(2)(t)> similar or equal to t(alpha) of the mean squared displacement with 0 < alpha < 1, we demonstrate here that the combination of the disordered environment with the many-body interactions leads to an ultraslow, logarithmic dynamics < x(2)(t)> similar or equal to log(1/2)t with a universal 1/2 exponent. Even when a characteristic sticking time exists but the fluctuations of sticking times diverge we observe the mean squared displacement < x(2)(t)> similar or equal to t(gamma) with 0 < gamma < 1/2, that is slower than the famed Harris law < x(2)(t)> similar or equal to t(1/2) without disorder. We rationalize the results in terms of a subordination to a counting process, in which each transition is dominated by the forward waiting time of an ageing continuous time process.

There exists compelling experimental evidence in numerous systems for logarithmically slow time evolution, yet its full theoretical understanding remains elusive. We here introduce and study a generic transition process in complex systems, based on nonrenewal, aging waiting times. Each state n of the system follows a local clock initiated at t = 0. The random time tau between clock ticks follows the waiting time density psi (tau). Transitions between states occur only at local clock ticks and are hence triggered by the local forward waiting time, rather than by psi (tau). For power-law forms psi (tau) similar or equal to tau(-1-alpha) (0 < alpha < 1) we obtain a logarithmic time evolution of the state number < n(t)> similar or equal to log(t/t(0)), while for alpha > 2 the process becomes normal in the sense that < n(t)> similar or equal to t. In the intermediate range 1 < alpha < 2 we find the power-law growth < n(t)> similar or equal to t(alpha-1). Our model provides a universal description for transition dynamics between aging and nonaging states.

We consider the effective surface motion of a particle that intermittently unbinds from a planar surface and performs bulk excursions. Based on a random-walk approach, we derive the diffusion equations for surface and bulk diffusion including the surface-bulk coupling. From these exact dynamic equations, we analytically obtain the propagator of the effective surface motion. This approach allows us to deduce a superdiffusive, Cauchy-type behavior on the surface, together with exact cutoffs limiting the Cauchy form. Moreover, we study the long-time dynamics for the surface motion.

In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed.