### Refine

#### Year of publication

#### Document Type

- Article (45)
- Postprint (2)
- Doctoral Thesis (1)

#### Keywords

- surface chemistry (2)
- Chelates (1)
- DFT (1)
- Electron dynamics (1)
- Ligand design (1)
- Palladium (1)
- Renewable resources (1)
- S li-gands (1)
- STM (1)
- UV (1)

In this paper, we report simulations of laser-driven many-electron dynamics by means of the time-dependent configuration interaction singles (TD-CIS) approach. Photoionization is included by a heuristic model within calculations employing standard Gaussian basis sets. Benzo[g]-N-methyl-quinolinium-7-hydroxylate (BMQ7H) serves as a test system to generate predefined wave packets, i.e. a superposition between the ground and fifth excited state, in a large molecule. For this molecule, these two states have a very similar geometry, which enables us to use the fixed nuclei approximation. Furthermore, this geometric stability would also prevent a dephasing of the electron wave packet due to nuclear dynamics in an experimental realization of our simulations. We also simulate the possible detection of such a wave packet by ultra short probe laser pulses, i.e. pump-probe spectra.

In this paper, we present quantum dynamical calculations on electron correlation dynamics in atoms and molecules using explicitly time-dependent ab initio configuration interaction theory. The goals are (i) to show that in which cases it is possible to switch off the electronic correlation by ultrashort laser pulses, and (ii) to understand the temporal evolution and the time scale on which it reappears. We characterize the appearance of correlation through electron-electron scattering when starting from an uncorrelated state, and we identify pathways for the preparation of a Hartree-Fock state from the correlated, true ground state. Exemplary results for noble gases, alkaline earth elements, and selected molecules are provided. For Mg we show that the uncorrelated state can be prepared using a shaped ultrashort laser pulse.

There is a demand for new and robust PdII extractants due to growing recycling rates. Chelating dithioethers are promising substances for solvent extraction as they form stable square-planar complexes with PdII. We have modified unsaturated dithioethers, which are known to coordinate PdII, and adapted them to the requirements of industrial practice. The ligands are analogues of 1,2-dithioethene with varying electron-withdrawing backbones and polar end-groups. The crystal structures of several ligands and their palladium complexes were determined as well as their electro- and photochemical properties, complex stability and behaviour in solution. Solvent extraction experiments showed the superiority of some of our ligands over conventionally used extractants in terms of their very fast reaction rates. With highly selective 1,2-bis(2-methoxyethylthio)benzene (4) it is possible to extract PdII from a highly acidic medium in the presence of other base and palladium-group metals.

Selective excitation of molecule-surface vibrations in H2 and D2 dissociatively adsorbed on Ru(0001)
(2012)

In this contribution we report about the selective vibrational excitation of H2 and D2 on Ru(0001) as an example for nonadiabatic coupling of an open quantum system to a dissipative environment. We investigate the possibility of achieving state-selective vibrational excitations of H2 and D2 adsorbed on a Ru(0001) surface using picosecond infrared laser pulses. The systems behavior is explored using pulses that are rationally designed and others that are optimized using a time-local variant of Optimal Control Theory. The effects of dissipation on the laser-driven dynamics are studied using the reduced-density matrix formalism. The non-adiabatic couplings between adsorbate and surface are computed perturbatively, for which our recently introduced state-resolved anharmonic rate model is used. It is shown that mode- and state-selective excitation can be achieved in the absence of dissipation when using optimized laser pulses. The inclusion of dissipation in the model reduces the state selectivity and the population transfer yield to highly excited states. In this case, mode activation is most effectively realized by a rational pulse of carefully chosen duration rather than by a locally optimized pulse.

We report explicitly time-dependent coupled cluster singles doubles (TD-CCSD) calculations, which simulate the laser-driven correlated many-electron dynamics in molecular systems. Small molecules, i.e., HF, H(2)O, NH(3), and CH(4), are treated mostly with polarized valence double zeta basis sets. We determine the coupled cluster ground states by imaginary time propagation for these molecules. Excited state energies are obtained from the Fourier transform of the time-dependent dipole moment after an ultrashort, broadband laser excitation. The time-dependent expectation values are calculated from the complex cluster amplitudes using the corresponding configuration interaction singles doubles wave functions. Also resonant laser excitations of these excited states are simulated, in order to explore the limits for the numerical stability of our current TD-CCSD implementation, which uses time-independent molecular orbitals to form excited configurations.

In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (rho-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the rho-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (similar to N(2)) with the number of configurations N used to represent the reduced density matrix in the rho-TDCI method, as compared to a N(3) scaling for the model in its original form.

We investigate the recombinative desorption of hydrogen and deuterium from a Ru(0001) surface initiated by femtosecond laser pulses. We adopt a quantum mechanical two-state model including three molecular degrees of freedom to describe the dynamics within the desorption induced by electronic transition (DIET) limit. The energy distributions as well as the state-resolved and ensemble properties of the desorbed molecules are analyzed in detail by using the time-energy method. Our results shed light on the experimentally observed 1) large isotopic effects regarding desorption yields and translational energies and 2) the nonequal energy partitioning into internal and translational modes. In particular, it is shown that a single temperature is sufficient to characterize the energy distributions for all degrees of freedom. Further, we confirm that quantization effects play an important role in the determination of the energy partitioning.

An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H-2 and D-2 from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed.

The formation of CuCl nanoplatelets from the ionic liquid precursor (ILP) butylpyridinium tetrachlorocuprate [C4Py](2)[CuCl4] using ascorbic acid as a reducing agent was investigated. In particular, electron paramagnetic resonance (EPR) spectroscopy was used to evaluate the interaction between ascorbic acid and the Cu(II) ion before reduction to Cu(I). EPR spectroscopy suggests that the [CuCl4](2-) ion in the neat IL is a distorted tetrahedron, consistent with DFT calculations. Addition of ascorbic acid leads to the removal of one chloride from the [CuCl4](2-) anion, as shown by DFT and the loss of symmetry by EPR. DFT furthermore suggests that the most stable adduct is formed when only one hydroxyl group of the ascorbic acid coordinates to the Cu(II) ion.

Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 angstrom and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures.