### Refine

#### Keywords

- Brownian yet non-Gaussian diffusion (2)
- Langevin equation (2)
- autoregressive models (2)
- codifference (2)
- diffusing diffusivity (2)
- diffusion (2)
- superstatistics (2)
- time series analysis (2)
- convergence (1)
- edge turbulence (1)

In this paper we propose an algorithm to distinguish between light- and heavy-tailed probability laws underlying random datasets. The idea of the algorithm, which is visual and easy to implement, is to check whether the underlying law belongs to the domain of attraction of the Gaussian or non-Gaussian stable distribution by examining its rate of convergence. The method allows to discriminate between stable and various non-stable distributions. The test allows to differentiate between distributions, which appear the same according to standard Kolmogorov-Smirnov test. In particular, it helps to distinguish between stable and Student's t probability laws as well as between the stable and tempered stable, the cases which are considered in the literature as very cumbersome. Finally, we illustrate the procedure on plasma data to identify cases with so-called L-H transition.

Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as ‘superstatistics’ or ‘diffusing diffusivity’. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion.

We address the problem of recognizing alpha-stable Levy distribution with Levy index close to 2 from experimental data. We are interested in the case when the sample size of available data is not large, thus the power law asymptotics of the distribution is not clearly detectable, and the shape of the empirical probability density function is close to a Gaussian. We propose a testing procedure combining a simple visual test based on empirical fourth moment with the Anderson-Darling and Jarque-Bera statistical tests and we check the efficiency of the method on simulated data. Furthermore, we apply our method to the analysis of turbulent plasma density and potential fluctuations measured in the stellarator-type fusion device and demonstrate that the phenomenon of the L-H transition from low confinement, L mode, to a high confinement, H mode, which occurs in this device is accompanied by the transition from Levy to Gaussian fluctuation statistics.