Refine
Year of publication
- 2014 (1837) (remove)
Document Type
- Article (1215)
- Doctoral Thesis (222)
- Postprint (125)
- Review (65)
- Monograph/Edited Volume (61)
- Preprint (47)
- Conference Proceeding (42)
- Part of a Book (19)
- Part of Periodical (14)
- Other (11)
Language
Keywords
- prevention (25)
- violence (22)
- Gewalt (21)
- Kriminalität (21)
- Nachhaltigkeit (21)
- Prävention (21)
- Rechtsextremismus (21)
- crime (21)
- right-wing extremism (21)
- sustainability (21)
Institute
- Institut für Biochemie und Biologie (245)
- Institut für Physik und Astronomie (238)
- Institut für Erd- und Umweltwissenschaften (191)
- Institut für Chemie (187)
- Institut für Psychologie (92)
- Sozialwissenschaften (64)
- Wirtschaftswissenschaften (61)
- Institut für Ernährungswissenschaft (58)
- Institut für Mathematik (54)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (51)
Тексты Литература
Идеальный шашлык
(2014)
Ökonomen wie Wirtschaftspolitiker berufen sich auf die Neutralitätstheorie des Geldes, wenn sie eine Entpolitisierung der Geldpolitik fordern. Sowohl die Theorie der Geldneutralität als auch das Paradigma der Entpolitisierung der Geldpolitik sind jedoch problematisch. Die politökonomischen Entwicklungen nach der globalen Finanz- und Wirtschaftskrise 2007/2008 und die jüngsten Kontroversen über die Rolle und Bedeutung von Geld haben dies deutlich vor Augen geführt. Die vorliegende Arbeit diskutiert zunächst die konzeptionellen Grundlagen und theoretischen Modelle der Geldneutralität. Anschließend werden die zentralen theoretischen Annahmen und Aussagen der Neutralitätstheorie aus einer kritischen heterodoxen Perspektive hinterfragt. Es wird argumentiert, dass Geld eine nicht-neutrale Produktionskraft ist, die weder ökonomisch noch sozial neutral ist. Die Bedingungen, unter denen Geld verfügbar ist und zirkuliert, sind richtungsweisend für die ökonomische Entwicklung. Daher kann es auch kein neutrales Geld oder gar eine apolitische Geldpolitik geben.
Downscaling of microfluidic cell culture and detection devices for electrochemical monitoring has mostly focused on miniaturization of the microfluidic chips which are often designed for specific applications and therefore lack functional flexibility. We present a compact microfluidic cell culture and electrochemical analysis platform with in-built fluid handling and detection, enabling complete cell based assays comprising on-line electrode cleaning, sterilization, surface functionalization, cell seeding, cultivation and electrochemical real-time monitoring of cellular dynamics. To demonstrate the versatility and multifunctionality of the platform, we explored amperometric monitoring of intracellular redox activity in yeast (Saccharomyces cerevisiae) and detection of exocytotically released dopamine from rat pheochromocytoma cells (PC12). Electrochemical impedance spectroscopy was used in both applications for monitoring cell sedimentation and adhesion as well as proliferation in the case of PC12 cells. The influence of flow rate on the signal amplitude in the detection of redox metabolism as well as the effect of mechanical stimulation on dopamine release were demonstrated using the programmable fluid handling capability. The here presented platform is aimed at applications utilizing cell based assays, ranging from e.g. monitoring of drug effects in pharmacological studies, characterization of neural stem cell differentiation, and screening of genetically modified microorganisms to environmental monitoring.
Background: Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication.
Results: The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases.
Conclusions: The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome.
Coated vesicles provide a major mechanism for the transport of proteins through the endomembrane system of plants. Transport between the endoplasmic reticulum and the Golgi involves vesicles with COPI and COPII coats, whereas clathrin is the predominant coat in endocytosis and post-Golgi trafficking. Sorting of cargo, coat assembly, budding, and fission are all complex and tightly regulated processes that involve many proteins. The mechanisms and responsible factors are largely conserved in eukaryotes, and increasing organismal complexity tends to be associated with a greater numbers of individual family members. Among the key factors is the class of ENTH/ANTH/VHS domain-containing proteins, which link membrane subdomains, clathrin, and other adapter proteins involved in early steps of clathrin coated vesicle formation. More than 30 Arabidopsis thaliana proteins contain this domain, but their generally low sequence conservation has made functional classification difficult. Reports from the last two years have greatly expanded our knowledge of these proteins and suggest that ENTH/ANTH/VHS domain proteins are involved in various instances of clathrin-related endomembrane trafficking in plants. This review aims to summarize these new findings and discuss the broader context of clathrin-dependent plant vesicular transport.
Downscaling of microfluidic cell culture and detection devices for electrochemical monitoring has mostly focused on miniaturization of the microfluidic chips which are often designed for specific applications and therefore lack functional flexibility. We present a compact microfluidic cell culture and electrochemical analysis platform with in-built fluid handling and detection, enabling complete cell based assays comprising on-line electrode cleaning, sterilization, surface functionalization, cell seeding, cultivation and electrochemical real-time monitoring of cellular dynamics. To demonstrate the versatility and multifunctionality of the platform, we explored amperometric monitoring of intracellular redox activity in yeast (Saccharomyces cerevisiae) and detection of exocytotically released dopamine from rat pheochromocytoma cells (PC12). Electrochemical impedance spectroscopy was used in both applications for monitoring cell sedimentation and adhesion as well as proliferation in the case of PC12 cells. The influence of flow rate on the signal amplitude in the detection of redox metabolism as well as the effect of mechanical stimulation on dopamine release were demonstrated using the programmable fluid handling capability. The here presented platform is aimed at applications utilizing cell based assays, ranging from e.g. monitoring of drug effects in pharmacological studies, characterization of neural stem cell differentiation, and screening of genetically modified microorganisms to environmental monitoring.
ResultsUnder conditions of elevated prenatal maternal stress, children carrying one or two DRD4 7r alleles were at increased risk of a diagnosis of CD/ODD. Moreover, homozygous carriers of the DRD4 7r allele displayed more externalizing behavior following exposure to higher levels of prenatal maternal stress, while homozygous carriers of the DRD4 4r allele turned out to be insensitive to the effects of prenatal stress.
ConclusionsThis study is the first to report a gene-environment interaction related to DRD4 and prenatal maternal stress using data from a prospective study, which extends earlier findings on the impact of prenatal maternal stress with respect to childhood antisocial behavior.
Earthquake catalogs are probably the most informative data source about spatiotemporal seismicity evolution. The catalog quality in one of the most active seismogenic zones in the world, Japan, is excellent, although changes in quality arising, for example, from an evolving network are clearly present. Here, we seek the best estimate for the largest expected earthquake in a given future time interval from a combination of historic and instrumental earthquake catalogs. We extend the technique introduced by Zoller et al. (2013) to estimate the maximum magnitude in a time window of length T-f for earthquake catalogs with varying level of completeness. In particular, we consider the case in which two types of catalogs are available: a historic catalog and an instrumental catalog. This leads to competing interests with respect to the estimation of the two parameters from the Gutenberg-Richter law, the b-value and the event rate lambda above a given lower-magnitude threshold (the a-value). The b-value is estimated most precisely from the frequently occurring small earthquakes; however, the tendency of small events to cluster in aftershocks, swarms, etc. violates the assumption of a Poisson process that is used for the estimation of lambda. We suggest addressing conflict by estimating b solely from instrumental seismicity and using large magnitude events from historic catalogs for the earthquake rate estimation. Applying the method to Japan, there is a probability of about 20% that the maximum expected magnitude during any future time interval of length T-f = 30 years is m >= 9.0. Studies of different subregions in Japan indicates high probabilities for M 8 earthquakes along the Tohoku arc and relatively low probabilities in the Tokai, Tonankai, and Nankai region. Finally, for scenarios related to long-time horizons and high-confidence levels, the maximum expected magnitude will be around 10.