### Refine

#### Year of publication

#### Document Type

- Article (2724) (remove)

#### Keywords

- gamma rays: galaxies (21)
- stars: early-type (21)
- X-rays: stars (19)
- gamma rays: general (18)
- anomalous diffusion (17)
- quasars: absorption lines (17)
- radiation mechanisms: non-thermal (17)
- stars: massive (16)
- Magellanic Clouds (15)
- acceleration of particles (15)

#### Institute

- Institut für Physik und Astronomie (2724) (remove)

For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms.

Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called “autoinducers”) and themselves sense the autoinducer concentration in their vicinity. Once—due to increased local cell density inside a “cluster” of the growing colony—the concentration of autoinducers exceeds a threshold value, cells in this clusters get “induced” into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology.

Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as ‘superstatistics’ or ‘diffusing diffusivity’. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion.

Fractional Brownian motion (FBM) is a Gaussian stochastic process with stationary, long-time correlated increments and is frequently used to model anomalous diffusion processes. We study numerically FBM confined to a finite interval with reflecting boundary conditions. The probability density function of this reflected FBM at long times converges to a stationary distribution showing distinct deviations from the fully flat distribution of amplitude 1/L in an interval of length L found for reflected normal Brownian motion. While for superdiffusion, corresponding to a mean squared displacement (MSD) 〈X² (t)〉 ⋍ tᵅ with 1 < α < 2, the probability density function is lowered in the centre of the interval and rises towards the boundaries, for subdiffusion (0 < α < 1) this behaviour is reversed and the particle density is depleted close to the boundaries. The MSD in these cases at long times converges to a stationary value, which is, remarkably, monotonically increasing with the anomalous diffusion exponent α. Our a priori surprising results may have interesting consequences for the application of FBM for processes such as molecule or tracer diffusion in the confines of living biological cells or organelles, or other viscoelastic environments such as dense liquids in microfluidic chambers.

Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement.

In this paper we report on photoswitchable polymer surfaces with dynamically and reversibly fluctuating topographies. It is well known that when azobenzene containing polymer films are irradiated with optical interference patterns the film topography changes to form a surface relief grating. In the simplest case, the film shape mimics the intensity distribution and deforms into a wave like, sinusoidal manner with amplitude that may be as large as the film thickness. This process takes place in the glassy state without photo-induced softening. Here we report on an intriguing discovery regarding the formation of reliefs under special illumination conditions. We have developed a novel setup combining the optical part for creating interference patterns, an AFM for in situ acquisition of topography changes and diffraction efficiency signal measurements. In this way we demonstrate that these gratings can be “set in motion” like water waves or dunes in the desert. We achieve this by applying repetitive polarization changes to the incoming interference pattern. Such light responsive surfaces represent the prerequisite for providing practical applications ranging from conveyer or transport systems for adsorbed liquid objects and colloidal particles to generation of adaptive and dynamic optical devices.

The simultaneous switching activity in digital circuits challenges the design of mixed-signal SoCs. Rather than focusing on time-domain noise voltage minimization, this work optimizes switching noise in the frequency domain. A two-tier solution based on the on-chip clock scheduling is proposed. First, to cope with the switching noise at the fundamental clock frequency, which usually dominates in terms of noise power, a two-phase clocking scheme is employed for system timing. Second, on-chip clock latencies are manipulated to target harmonic peaks in specific frequency bands for the spectral noise optimization. An automated design flow, which allows for noise optimization in user-defined application-specific frequency bands, is developed. The effectiveness of our design solution is validated by measurements of substrate noise and conductive EMI (electromagnetic interference) noise on a test chip, which consists of four wireless sensor node baseband processors each addressing a distinct clock-tree-synthesis strategy. Compared to the reference synchronous design, the proposed clock scheduling solution substantially reduces noise in the target GSM-850 band, i.e., by 11.1 dB on the substrate noise and 12.9 dB on the EMI noise, along with dramatic noise peak drops measured at the 50-MHz clock frequency.

The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol
(2019)

Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.

A considerable number of systems have recently been reported in which
Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential(Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.

Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.