### Refine

#### Keywords

- pseudodifferential operators (5) (remove)

Boundary value problems for pseudodifferential operators (with or without the transmission property) are characterised as a substructure of the edge pseudodifferential calculus with constant discrete asymptotics. The boundary in this case is the edge and the inner normal the model cone of local wedges. Elliptic boundary value problems for non-integer powers of the Laplace symbol belong to the examples as well as problems for the identity in the interior with a prescribed number of trace and potential conditions. Transmission operators are characterised as smoothing Mellin and Green operators with meromorphic symbols.

The paper is devoted to pseudodifferential boundary value problems in domains with cuspidal wedges. Concerning the geometry we even admit a more general behaviour, namely oscillating cuspidal wedges. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to edges.

On a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fréchet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operators we develop a Hodge theory for elliptic complexes and outline a few applications thereof.

For general elliptic pseudodifferential operators on manifolds with singular points, we prove an algebraic index formula. In this formula the symbolic contributions from the interior and from the singular points are explicitly singled out. For two-dimensional manifolds, the interior contribution is reduced to the Atiyah-Singer integral over the cosphere bundle while two additional terms arise. The first of the two is one half of the 'eta' invariant associated to the conormal symbol of the operator at singular points. The second term is also completely determined by the conormal symbol. The example of the Cauchy-Riemann operator on the complex plane shows that all the three terms may be non-zero.

The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points.