Refine
Document Type
- Postprint (2)
- Article (1)
- Doctoral Thesis (1)
- Review (1)
Language
- English (5) (remove)
Keywords
- carbon dioxide (5) (remove)
Institute
- Institut für Geowissenschaften (3)
- Institut für Chemie (2)
- Extern (1)
The performance of a home-built tunable diode laser (TDL) spectrometer has been optimized regarding multi-line detection of carbon dioxide in natural gases. In the regime of the (30<SUP>0</SUP>1)<SUB>III</SUB> ← (000) band of <SUP>12</SUP>CO<SUB>2</SUB> around 1.6 μm, the dominating isotope species <SUP>12</SUP>CO<SUB>2</SUB>, <SUP>13</SUP>CO<SUB>2</SUB>, and <SUP>12</SUP>C<SUP>18</SUP>O<SUP>16</SUP>O were detected simultaneously. In contrast to most established techniques, selective measurements are performed without any sample preparation. This is possible since the CO<SUB>2</SUB> detection is free of interference from water, ubiquitous in natural gases. Detection limits in the range of a few ppmv were obtained for each species utilizing wavelength modulation (WM) spectroscopy with balanced detection in a long-path absorption cell set-up. Linear calibration plots cover a dynamic range of four orders of magnitude, allowing for quantitative CO<SUB>2</SUB> detection in various samples, like soil and breath gas. High isotopic resolution enables the excellent selectivity, sensitivity, and stability of the chosen analytical concept. The obtained isotopic resolution of typically ± 1.0 ‰ and ± 1.5 ‰ (for 3 vol. % and 0.7 vol. % of CO<SUB>2</SUB>, respectively) offers a promising analytical tool for isotope-ratio determination of carbon dioxide in soil gas. Preliminary experiments on soil respiration for the first time combine the on-line quantification of the overall carbon dioxide content with an optode sensor and isotopic determination (TDL system) of natural gas species.
Near-infrared (NIR) absorption spectroscopy with tunable diode lasers allows the simultaneous detection of the three most important isotopologues of carbon dioxide (<SUP>12</SUP>CO<SUB>2</SUB>, <SUP>13</SUP>CO<SUB>2</SUB>, <SUP>12</SUP>C<SUP>18</SUP>O<SUP>16</SUP>O) and carbon monoxide (<SUP>12</SUP>CO, <SUP>13</SUP>CO, <SUP>12</SUP>C<SUP>18</SUP>O). The flexible and compact fiber-optic tunable diode laser absorption spectrometer (TDLAS) allows selective measurements of CO<SUB>2</SUB> and CO with high isotopic resolution without sample preparation since there is no interference with water vapour. For each species, linear calibration plots with a dynamic range of four orders of magnitude and detection limits (LOD) in the range of a few ppm were obtained utilizing wavelength modulation spectroscopy (WMS) with balanced detection in a Herriott-type multipass cell. The high performance of the apparatus is illustrated by fill-evacuation-refill cycles.
The trace gases CO2 and CH4 pertain to the most relevant greenhouse gases and are important exchange fluxes of the global carbon (C) cycle. Their atmospheric quantity increased significantly as a result of the intensification of anthropogenic activities, such as especially land-use and land-use change, since the mid of the 18th century. To mitigate global climate change and ensure food security, land-use systems need to be developed, which favor reduced trace gas emissions and a sustainable soil carbon management. This requires the accurate and precise quantification of the influence of land-use and land-use change on CO2 and CH4 emissions. A common method to determine the trace gas dynamics and C sink or source function of a particular ecosystem is the closed chamber method. This method is often used assuming that accuracy and precision are high enough to determine differences in C gas emissions for e.g., treatment comparisons or different ecosystem components.
However, the broad range of different chamber designs, related operational procedures and data-processing strategies which are described in the scientific literature contribute to the overall uncertainty of closed chamber-based emission estimates. Hence, the outcomes of meta-analyses are limited, since these methodical differences hamper the comparability between studies. Thus, a standardization of closed chamber data acquisition and processing is much-needed.
Within this thesis, a set of case studies were performed to: (I) develop standardized routines for an unbiased data acquisition and processing, with the aim of providing traceable, reproducible and comparable closed chamber based C emission estimates; (II) validate those routines by comparing C emissions derived using closed chambers with independent C emission estimates; and (III) reveal processes driving the spatio-temporal dynamics of C emissions by developing (data processing based) flux separation approaches.
The case studies showed: (I) the importance to test chamber designs under field conditions for an appropriate sealing integrity and to ensure an unbiased flux measurement. Compared to the sealing integrity, the use of a pressure vent and fan was of minor importance, affecting mainly measurement precision; (II) that the developed standardized data processing routines proved to be a powerful and flexible tool to estimate C gas emissions and that this tool can be successfully applied on a broad range of flux data sets from very different ecosystem; (III) that automatic chamber measurements display temporal dynamics of CO2 and CH4 fluxes very well and most importantly, that they accurately detect small-scale spatial differences in the development of soil C when validated against repeated soil inventories; and (IV) that a simple algorithm to separate CH4 fluxes into ebullition and diffusion improves the identification of environmental drivers, which allows for an accurate gap-filling of measured CH4 fluxes.
Overall, the proposed standardized data acquisition and processing routines strongly improved the detection accuracy and precision of source/sink patterns of gaseous C emissions. Hence, future studies, which consider the recommended improvements, will deliver valuable new data and insights to broaden our understanding of spatio-temporal C gas dynamics, their particular environmental drivers and underlying processes.
High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120 degrees C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custommade parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid-gas-rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90 degrees C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample.