Genome and karyotype evolution underlying speciation and diversification of electric organ discharges in African weakly electric fish (Campylomormyrus, Mormyridae, Teleostei)

  • The African weakly electric fish genus Campylomormyrus is a well-investigated fish group of the species-rich family Mormyridae. They are able to generate species-specific electric organ discharges (EODs) which vary in their waveform characteristics including polarity, phase umber and duration. In mormyrid species EODs are used for communication, species discrimination and mate recognition, and it is thought hat they serve as pre-zygotic isolation mechanism driving sympatric speciation by promoting assortative mating. The EOD diversification, its volutionary effects and the link to species divergence have been examined histologically, behaviorally, and genetically. Molecular analyses are a major tool to identify species and their phenotypic traits by studying the underlying genes. The genetic variability between species further provides information from which evolutionary processes, such as speciation, can be deduced. Hence, the ultimate aim of this study is the investigation of genetic variability within the African weakly electricThe African weakly electric fish genus Campylomormyrus is a well-investigated fish group of the species-rich family Mormyridae. They are able to generate species-specific electric organ discharges (EODs) which vary in their waveform characteristics including polarity, phase umber and duration. In mormyrid species EODs are used for communication, species discrimination and mate recognition, and it is thought hat they serve as pre-zygotic isolation mechanism driving sympatric speciation by promoting assortative mating. The EOD diversification, its volutionary effects and the link to species divergence have been examined histologically, behaviorally, and genetically. Molecular analyses are a major tool to identify species and their phenotypic traits by studying the underlying genes. The genetic variability between species further provides information from which evolutionary processes, such as speciation, can be deduced. Hence, the ultimate aim of this study is the investigation of genetic variability within the African weakly electric fish genus Campylomormyrus to better understand their sympatric speciation and comprehend their evolutionary drivers. In order to extend the current knowledge and gain more insights into its species history, karyological and genomic approaches are being pursued considering species differences. Previous studies have shown that species with different EOD duration have specific gene expression patterns and single nucleotide polymorphisms (SNPs). As EODs play a crucial role during the evolution of Campylomormyrus species, the identification of its underlying genes may suggest how the EOD diversity evolved and whether this trait is based on a complex network of genetic processes or is regulated by only a few genes. The results obtained in this study suggest that genes with non-synonymous SNPs, which are exclusive to C. tshokwe with an elongated EOD, have frequent functions ssociated with tissue morphogenesis and transcriptional regulation. Therefore, it is proposed that these processes likely co-determine EOD characteristics of Campylomormyrus species. Furthermore, genome-wide analyses confirm the genetic difference among most Campylomormyrus species. In contrast, the same analyses reveal genetic similarity among individuals of the alces-complex showing different EOD waveforms. It is therefore hypothesized that the low genetic variability and high EOD diversity represents incipient sympatric speciation. The karyological description of a Campylomormyrus species provides crucial information about chromosome number and shapes. Its diploid chromosome number of 2n=48 supports the conservation of this trait within Mormyridae. Differences have been detected in the number of bi-armed chromosomes which is unusually high compared to other mormyrid species. This high amount can be due to chromosome rearrangements which could cause genetic incompatibility and reproductive isolation. Hence an alternative hypothesis regarding processes which cause sympatric speciation is that chromosome differences are involved in the speciation process of Campylomormyrus by acting as postzygotic isolation mechanism. In summary, the karyological and genomic investigations conducted in this study contributed to the increase of knowledge about Campylomormyrus species, to the solution of some existing ambiguities like phylogenetic relationships and to the raising of new hypothesis explaining the sympatric speciation of those African weakly electric fish. This study provides a basis for future genomic research to obtain a complete picture for causes and results of evolutionary processes in Campylomormyrus.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Julia Canitz
Reviewer(s):Ralph TiedemannORCiDGND, Rüdiger KraheORCiDGND, Walter Salzburger
Publication type:Doctoral Thesis
Language:English
Publication year:2019
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/05/22
Release date:2020/01/22
Number of pages:111
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.