Automatic hypocenter determination of volcano induced seismic transients based on wave field coherence - an application to the 1998 eruption of Mt. Merapi, Indonesia

  • In order to monitor the seismic activity of Mt. Merapi (Indonesia) over a long period of time, we installed a permanent array of both broadband and short-period seismometers during the summer of 1997. Considering the requirements of an automatic classification and localization system for seismic monitoring and surveillance at active volcanoes, we split this network into three small aperture arrays distributed around the volcano. We introduce here a newly developed method to determine the hypocenters in an automatic, non-linear manner using the coherence of seismic waves observed at the different arrays. To test this method, we analyze a swarm of VT-B events recorded by the network. The first step in this algorithm is based on a modified smoothed coherence transform. In the second step we perform a semblance analysis applied to the 3D problem, evaluating the quality of the estimated relative onset-times. After more than one year of dormancy, Mt. Merapi renewed its activity at the end of June 1998. This gave us the opportunity toIn order to monitor the seismic activity of Mt. Merapi (Indonesia) over a long period of time, we installed a permanent array of both broadband and short-period seismometers during the summer of 1997. Considering the requirements of an automatic classification and localization system for seismic monitoring and surveillance at active volcanoes, we split this network into three small aperture arrays distributed around the volcano. We introduce here a newly developed method to determine the hypocenters in an automatic, non-linear manner using the coherence of seismic waves observed at the different arrays. To test this method, we analyze a swarm of VT-B events recorded by the network. The first step in this algorithm is based on a modified smoothed coherence transform. In the second step we perform a semblance analysis applied to the 3D problem, evaluating the quality of the estimated relative onset-times. After more than one year of dormancy, Mt. Merapi renewed its activity at the end of June 1998. This gave us the opportunity to analyze all stages of dome growth, collapse and new intrusion of magma using the associated seismicity in a post-processing sense. This also allowed us to calibrate and test our newly developed automatic monitoring system using the more pronounced waveforms of VT-B events. By detecting and classifying different event types automatically, we are able to localize a large number of VT-B events which occurred just before the initial eruption. We are also able to resolve some properties of the wavefield at Mt Merapi which are essential for further interpretations. Finally, the results show that the source region of the VT-B type seismicity just before the 1998 eruption is closely related to the region of subsequent high volcanic activity and therefore may represent a promising tool to forecast future eruptions.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Further contributing person(s):Joachim Wassermann, Matthias Ohrnberger
Publication type:Article
Language:English
Year of first publication:2002
Publication year:2002
Release date:2017/03/24
Source:Journal of volcanology and geothermal research. - 110 (2001), 1, S. 57 - 78
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.