Ultrahigh-temperature high-pressure granulites from Tirschheim, Saxon Granulite Massif, Germany : P-T-t path and geotectonic implications

  • The Saxon granulites, the type granulite locality, were deeply buried, extremely heated and then rapidly exhumed during the Variscan Orogeny; thus their evolution differs from many granulites elsewhere. The peak-metamorphic assemblages of layered felsic-mafic granulites from a 500 m deep borehole consist of garnet, kyanite, rutile, ternary feldspar and quartz in felsic granulite, and garnet, omphacite, titanite, ternary feldspar and quartz in mafic granulite. A minimum temperature of 1000-1020degreesC, calculated from reintegrated hypersolvus feldspar in felsic and mafic granulites, is consistent with the highest temperature estimates from garnet-clinopyroxene equilibria. Various equilibria in felsic and mafic granulites record a peak pressure of about 23 kbar. Diffusion zoning and local homogenisation of minerals reflect near-isothermal decompression that preceded cooling and partial hydration at medium- to low-pressure. U-Pb dating of titanite yields an age of peak metamorphism at 340.7+/-0.8 Ma (2sigma). However, chemicalThe Saxon granulites, the type granulite locality, were deeply buried, extremely heated and then rapidly exhumed during the Variscan Orogeny; thus their evolution differs from many granulites elsewhere. The peak-metamorphic assemblages of layered felsic-mafic granulites from a 500 m deep borehole consist of garnet, kyanite, rutile, ternary feldspar and quartz in felsic granulite, and garnet, omphacite, titanite, ternary feldspar and quartz in mafic granulite. A minimum temperature of 1000-1020degreesC, calculated from reintegrated hypersolvus feldspar in felsic and mafic granulites, is consistent with the highest temperature estimates from garnet-clinopyroxene equilibria. Various equilibria in felsic and mafic granulites record a peak pressure of about 23 kbar. Diffusion zoning and local homogenisation of minerals reflect near-isothermal decompression that preceded cooling and partial hydration at medium- to low-pressure. U-Pb dating of titanite yields an age of peak metamorphism at 340.7+/-0.8 Ma (2sigma). However, chemical inheritance from precursor rutile and post-peak Pb loss are also evident, suggesting a protolith age of 499+/-2 Ma (2sigma) and partial resetting down to an age of 333+/-2 Ma (2sigma). Rb-Sr mica ages of 333.2+/-3.3 Ma (2sigma) are interpreted as dating cooling through about 620degreesC. Hence the Saxon granulites were exhumed to the upper crust during the short period of 6-11 Ma, which corresponds to average exhumation and cooling rates of 10 mm/year and 50degreesC/Ma, respectively. Such rapid exhumation is inconsistent with recent numerical models that assume foreland- directed transport of the Saxon granulites in the lower crust followed by extensional unroofing. Instead, high-pressure rocks of the Saxon Granulite Massif and the nearby Erzgebirge experienced a buoyant rise to the middle crust and subsequent juxtaposition with structurally higher units along a series of medium- to low-pressure detachment faultsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jochen RötzlerORCiD, R. L. Romer, Hubertus Budzinski, Roland OberhänsliGND
ISSN:0935-1221
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:European Journal of Mineralogy. - ISSN 0935-1221. - 16 (2004), 6, S. 917 - 937
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.