LensClean revisited

  • We discuss the LENSCLEAN algorithm which for a given gravitational lens model fits a source brightness distribution to interferometric radio data in a similar way as standard CLEAN does in the unlensed case. The lens model parameters can then be varied in order to minimize the residuals and determine the best model for the lens mass distribution. Our variant of this method is improved in order to be useful and stable even for high dynamic range systems with nearly degenerated lens model parameters. Our test case B0218 + 357 is dominated by two bright images but the information needed to constrain the unknown parameters is provided only by the relatively smooth and weak Einstein ring. The new variant of LENSCLEAN is able to fit lens models even in this difficult case. In order to allow the use of general mass models with LENSCLEAN, we develop the new method LENTIL which inverts the lens equation much more reliably than any other method. This high reliability is essential for the use as part of LENSCLEAN. Finally a new method isWe discuss the LENSCLEAN algorithm which for a given gravitational lens model fits a source brightness distribution to interferometric radio data in a similar way as standard CLEAN does in the unlensed case. The lens model parameters can then be varied in order to minimize the residuals and determine the best model for the lens mass distribution. Our variant of this method is improved in order to be useful and stable even for high dynamic range systems with nearly degenerated lens model parameters. Our test case B0218 + 357 is dominated by two bright images but the information needed to constrain the unknown parameters is provided only by the relatively smooth and weak Einstein ring. The new variant of LENSCLEAN is able to fit lens models even in this difficult case. In order to allow the use of general mass models with LENSCLEAN, we develop the new method LENTIL which inverts the lens equation much more reliably than any other method. This high reliability is essential for the use as part of LENSCLEAN. Finally a new method is developed to produce source plane maps of the unlensed source from the best LENSCLEAN brightness models. This method is based on the new concept of 'dirty beams' in the source plane. The application to the lens B0218 + 357 leads to the first useful constraints for the lens position and thus to a result for the Hubble constant. These results are presented in the accompanying Paper II, together with a discussion of classical lens modelling for this systemshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Olaf Wucknitz
ISSN:0035-8711
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Monthly Notices of the Royal Astronomical Society. - ISSN 0035-8711. - 349 (2004), 1, S. 1 - 13
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.