Steady state erosion of critical Coulomb wedges with applications to Taiwan and the Himalaya

  • [1] Orogenic structure appears to be partially controlled by the addition to and removal of material from the mountain belt by tectonic accretion and geomorphic erosion, respectively. We developed a coupled erosion-deformation model for orogenic wedges that are in erosional steady state and deform at their Coulomb failure limit. Erosional steady state is reached when all material introduced into the wedge is removed by erosion that is limited by the rate at which rivers erode through bedrock. We found that the ultimate form of a wedge is controlled by the wedge mechanical properties, sole-out depth of the basal decollement, erosional exponents, basin geometry, and the ratio of the added material flux to the erosional constant. As this latter ratio is increased, wedge width and surface slopes increase. We applied these models to the Taiwan and Himalayan orogenic wedges and found that despite a higher flux of material entering the former, the inferred ratio was larger for the latter. Calculated values for the erodibility of each wedge[1] Orogenic structure appears to be partially controlled by the addition to and removal of material from the mountain belt by tectonic accretion and geomorphic erosion, respectively. We developed a coupled erosion-deformation model for orogenic wedges that are in erosional steady state and deform at their Coulomb failure limit. Erosional steady state is reached when all material introduced into the wedge is removed by erosion that is limited by the rate at which rivers erode through bedrock. We found that the ultimate form of a wedge is controlled by the wedge mechanical properties, sole-out depth of the basal decollement, erosional exponents, basin geometry, and the ratio of the added material flux to the erosional constant. As this latter ratio is increased, wedge width and surface slopes increase. We applied these models to the Taiwan and Himalayan orogenic wedges and found that despite a higher flux of material entering the former, the inferred ratio was larger for the latter. Calculated values for the erodibility of each wedge showed at least an order of magnitude lower value for the Himalaya relative to Taiwan. These values are consistent with the lower precipitation regime in the Himalaya relative to Taiwan and the exposure of crystalline rocks within the Himalayan orogenic wedge. Independently determined rock erodibility estimates are consistent with the accretionary wedge sediments and metasediments and the crystalline and high-grade metamorphic rocks exposed within Taiwan and the Himalaya, respectively. Therefore differences in rock type and climate apparently lead to key differences in the erosion and hence orogenic structure of these two mountain beltsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:G. E. Hilley, Manfred StreckerORCiDGND
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Journal of Geophysical Research-Solid Earth. - 109 (2004), B1, S. 17
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.