Inorganic carbon acquisition by Chlamydomonas acidophila across a pH range

  • Chlamydomonas acidophila Negoro had a higher maximum growth rate upon aeration with 5% CO2 (v/v) than in nonaerated conditions at an external pH above 2. In medium with a pH of 1.0 or 2.0, a decrease in the maximum growth rate was observed upon CO2 aeration in comparison with nonaerated conditions. At both very low and very high external pH conditions, an induction of external carbonic anhydrase was detected; this being more pronounced in CO2-aerated cells than in nonaerated cells. It is therefore suggested that the induction of carbonic anhydrase is part of a stress response in Chlamydomonas acidophila. Comparison of some physiological characteristics of Chlamydomonas acidophila acclimated at pH 2.65 and at pH 6.0, revealed that CO2 aeration increased gross maximum photosynthesis at both pHs, whereas respiration, light acclimation, and photoinhibition were not effected. At pH 2.65, Chlamydomonas acidophila was found to have a carbon-concentrating mechanism under nonaerated conditions, whereas it did not under CO2-aerated conditionsChlamydomonas acidophila Negoro had a higher maximum growth rate upon aeration with 5% CO2 (v/v) than in nonaerated conditions at an external pH above 2. In medium with a pH of 1.0 or 2.0, a decrease in the maximum growth rate was observed upon CO2 aeration in comparison with nonaerated conditions. At both very low and very high external pH conditions, an induction of external carbonic anhydrase was detected; this being more pronounced in CO2-aerated cells than in nonaerated cells. It is therefore suggested that the induction of carbonic anhydrase is part of a stress response in Chlamydomonas acidophila. Comparison of some physiological characteristics of Chlamydomonas acidophila acclimated at pH 2.65 and at pH 6.0, revealed that CO2 aeration increased gross maximum photosynthesis at both pHs, whereas respiration, light acclimation, and photoinhibition were not effected. At pH 2.65, Chlamydomonas acidophila was found to have a carbon-concentrating mechanism under nonaerated conditions, whereas it did not under CO2-aerated conditions at pH 6. The affinity for CO2 use in O-2 production was not dependent on CO2 aeration, but it was much lower at pH 6 than it was at pH 2.65. CO2 kinetic characteristics indicate that the photosynthesis of Chlamydomonas acidophila in its natural environment is not limited by inorganic carbonshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elly SpijkermanORCiD
ISSN:0008-4026
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Canadian Journal of Botany-Revue Canadienne De Botanique. - ISSN 0008-4026. - 83 (2005), 7, S. 872 - 878
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.