Self-diffusion in granular gases : Green-Kubo versus Chapman-Enskog

  • We study the diffusion of tracers (self-diffusion) in a homogeneously cooling gas of dissipative particles, using the Green-Kubo relation and the Chapman-Enskog approach. The dissipative particle collisions are described by the coefficient of restitution epsilon which for realistic material properties depends on the impact velocity. First, we consider self-diffusion using a constant coefficient of restitution, epsilon=const, as frequently used to simplify the analysis. Second, self-diffusion is studied for a simplified (stepwise) dependence of epsilon on the impact velocity. Finally, diffusion is considered for gases of realistic viscoelastic particles. We find that for epsilon=const both methods lead to the same result for the self-diffusion coefficient. For the case of impact-velocity dependent coefficients of restitution, the Green-Kubo method is, however, either restrictive or too complicated for practical application, therefore we compute the diffusion coefficient using the Chapman-Enskog method. We conclude that in applicationWe study the diffusion of tracers (self-diffusion) in a homogeneously cooling gas of dissipative particles, using the Green-Kubo relation and the Chapman-Enskog approach. The dissipative particle collisions are described by the coefficient of restitution epsilon which for realistic material properties depends on the impact velocity. First, we consider self-diffusion using a constant coefficient of restitution, epsilon=const, as frequently used to simplify the analysis. Second, self-diffusion is studied for a simplified (stepwise) dependence of epsilon on the impact velocity. Finally, diffusion is considered for gases of realistic viscoelastic particles. We find that for epsilon=const both methods lead to the same result for the self-diffusion coefficient. For the case of impact-velocity dependent coefficients of restitution, the Green-Kubo method is, however, either restrictive or too complicated for practical application, therefore we compute the diffusion coefficient using the Chapman-Enskog method. We conclude that in application to granular gases, the Chapman-Enskog approach is preferable for deriving kinetic coefficients. (C) 2005 American Institute of Physicsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Nikolai V. BrilliantovORCiDGND, T. Poschel
ISSN:1054-1500
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Chaos : an interdisciplinary journal of nonlinear science. - ISSN 1054-1500. - 15 (2005), 2, S. 14
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.